Uploaded to the VFC Website This Document has been provided to you courtesy of Veterans-For-Change! Feel free to pass to any veteran who might be able to use this information! For thousands more files like this and hundreds of links to useful information, and hundreds of "Frequently Asked Questions, please go to: Veterans-For-Change If Veterans don't help Veterans, who will? Note VFC is not liable for source information in this document, it is merely provided as a courtesy to our members & subscribers. ## Veterans and Agent Orange ## **Update 2008** Committee to Review the Health Effects in Vietnam Veterans of Exposure to Herbicides (Seventh Biennial Update) Board on Population Health and Public Health Practice INSTITUTE OF MEDICINE OF THE NATIONAL ACADEMIES THE NATIONAL ACADEMIES PRESS Washington, D.C. www.nap.edu the metabolism of estrogen, and this leads to a decrease in the amount of estrogen available for binding and activating the estrogen receptor. The ultimate effect of TCDD is an interference with all the bodily functions that are regulated by estrogens. Similarly, the actions of TCDD on the adrenal steroids can adversely affect their ability to regulate glucose tolerance, insulin sensitivity, lipid metabolism, obesity, vascular function, and cardiac remodeling. In addition to changing the amount of hormone present, TCDD has been found to interfere with the ability of receptors to fulfill their role in transmitting hormone signals. Animal models have shown that exposure to TCDD can increase the amounts of enzymes in the body and interfere with the ability of hormones to activate their specific hormone receptors. Those actions of TCDD on enzymes and hormone receptors are thought to underlie, in part, observed developmental and reproductive effects and cancers that are hormone-responsive. TCDD alters the paths of cellular differentiation. Research performed primarily in cultured cells has shown that TCDD can affect the ability of cells to undergo such processes as proliferation, differentiation, and apoptosis. During the proliferative process, cells grow and divide. When cells are differentiating, they are undergoing a change from less specialized to more specialized. Cellular differentiation is essential for an organism to mature from a fetal to an adult state. In the adult, proper differentiation is required for normal functions of the body, for example, in maintaining a normally responsive immune system. Processes of controlled cell death, such as apoptosis, are similarly important during development of the fetus and are necessary for normal physiologic functions in the adult. Apoptosis is a way for the body to eliminate damaged or unnecessary cells. The ability of a cell to undergo proliferation, differentiation, and apoptosis is tightly controlled by an intricate network of signaling molecules that allows the body to maintain the appropriate size and number of all the specialized cells that form the fabric of complex tissues and organs. Disruption of that network that alters the delicate balance of cell fate can have severe consequences, including impairment of the function of the organ because of the absence of specialized cells. Alternatively, the presence of an excess of some kinds of cells can result in the formation and development of tumors. Thus, the ability of TCDD to disrupt the normal course of a specific cell to proliferate, differentiate, or undergo apoptosis is thought to underlie (at least in part) its adverse effects on the immune system and the developing fetus and its ability to promote the formation of certain cancers. ## Definition of Dioxin-like Compounds and TEF and TEQ Terminology Many compounds have dioxin-like properties: they have similar chemical structure, have similar physiochemical properties, and cause a common battery of toxic responses. Because of their hydrophobic nature and resistance to me- - Arsenescu V, Arsenescu RI, King V, Swanson H, Cassis LA. 2008. Polychlorinated biphenyl–77 induces adipocyte differentiation and proinflammatory adipokines and promotes obesity and atherosclerosis. *Environmental Health Perspectives* 116(6):761–768. - Aylward LL, Brunet RC, Carrier G, Hays SM, Cushing CA, Needham LL, Patterson DG Jr, Gerthoux PM, Brambilla P, Mocarelli P. 2005a. Concentration-dependent TCDD elimination kinetics in humans: Toxicokinetic modeling for moderately to highly exposed adults from Seveso, Italy, and Vienna, Austria, and impact on dose estimates for the NIOSH cohort. *Journal of Exposure Analysis and Environment Epidemiology* 15(1):51–65. - Aylward LL, Brunet RC, Starr TB, Carrier G, Delzell E, Cheng H, Beall C. 2005b. Exposure reconstruction for the TCDD-exposed NIOSH cohort using a concentration- and age-dependent model of elimination. *Risk Analysis* 25(4):945–956. - Bacsi SG, Reisz-Porszasz S, Hankinson O. 1995. Orientation of the heterodimeric aryl hydrocarbon (dioxin) receptor complex on its asymmetric DNA recognition sequence. *Molecular Pharmacology* 47(3):432–438. - Banks YB, Birnbaum LS. 1991. Absorption of 2,3,7,8-tetrachlorodibenzo-*p*-dioxin (TCDD) after low dose dermal exposure. *Toxicology and Applied Pharmacology* 107(2):302–310. - Birnbaum L, Harris M, Stocking L, Clark A, Morrissey R. 1989. Retinoic acid and 2,3,7,8-tetrachlorodibenzo-p-dioxin selectively enhance teratogenesis in C57BL/6N mice. *Toxicology and Applied Pharmacology* 98:487–500. - Biswas G, Srinivasan S, Anandatheerthavarada HK, Avadhani NG. 2008. Dioxin-mediated tumor progression through activation of mitochondria-to-nucleus stress signaling. *Proceedings of the National Academy of Sciences of the United States of America* 105(1):186–191. - Blakley BR. 1997. Effect of Roundup and Tordon 202C herbicides on antibody production in mice. *Veterinary and Human Toxicology* 39(4):204–206. - Boutros PC, Moffat ID, Franc MA, Tijet N, Tuomisto J, Pohjanvirta R, Okey AB. 2004. Dioxin-responsive AHRE–II gene battery: Identification by phylogenetic footprinting. *Biochemical and Biophysical Research Communications* 321(3):707–715. - Boverhof DR, Burgoon LD, Williams KJ, Zacharewski TR. 2008. Inhibition of estrogen-mediated uterine gene expression responses by dioxin. *Molecular Pharmacology* 73(1):82–93. - Bowman RE, Schantz SL, Weerasinghe NCA, Gross ML, Barsotti DA. 1989. Chronic dietary intake of 2,3,7,8-tetrachlorodibenzo-*p*-dioxin (TCDD) at 5 and 25 parts per trillion in the monkey: TCDD kinetics and dose–effect estimate of reproductive toxicity. *Chemosphere* 18:243–252. - Brand RM, Spalding M, Mueller C. 2002. Sunscreens can increase dermal penetration of 2,4-dichlorophenoxyacetic acid. *Journal of Toxicology–Clinical Toxicology* 40(7):827–832. - Bredhult C, Backlin BM, Olovsson M. 2007. Effects of some endocrine disruptors on the proliferation and viability of human endometrial endothelial cells in vitro. *Reproductive Toxicology* 23(4):550–559. - Burbach KM, Poland A, Bradfield CA. 1992. Cloning of the Ah–receptor cDNA reveals a distinctive ligand-activated transcription factor. *Proceedings of the National Academy of Sciences of the United States of America* 89:8185–8189. - Burchiel SW, Thompson TA, Lauer FT, Oprea TI. 2008. Corrigendum to "Activation of dioxin response element (DRE)—associated genes by benzo(a)pyrene 3,6-quinone and benzo(a)pyrene 1,6-quinone in MCF-10A human mammary epithelial cells." *Toxicology and Applied Pharmacology* 226(3):345–346. - Carrier G, Brunet RC, Brodeur J. 1995. Modeling of the toxicokinetics of polychlorinated dibenzop-dioxins and dibenzofurans in mammalians, including humans. II. Kinetics of absorption and disposition of PCDDs/PCDFs. *Toxicology and Applied Pharmacology* 131(2):267–276. - Carver L, Bradfield C. 1997. Ligand-dependent interaction of the aryl hydrocarbon receptor with a novel immunophilin homolog in vivo. *Journal of Biological Chemistry* 272:11452–11456. - Carver L, Jackiw V, Bradfield C. 1994. The 90-kDa heat shock protein is essential for Ah receptor signaling in a yeast expression system. *Journal of Biological Chemistry* 269:30109–30112.