# Uploaded to VFC Website <br> ~ October 2012 ~ 

This Document has been provided to you courtesy of Veterans-For-Change!
Feel free to pass to any veteran who might be able to use this information!
For thousands more files like this and hundreds of links to useful information, and hundreds of "Frequently Asked Questions, please go to:

## Veterans-For-Change

Veterans-For-Change is a 501(c)(3) Non-Profit Corporation
Tax ID \#27-3820181

## If Veteran's don't help Veteran's, who will?

We appreciate all donations to continue to provide information and services to Veterans and their families.
https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick\&hosted button id=WGT2M5UTB9A78

Note:
VFC is not liable for source information in this document, it is merely provided as a courtesy to our members.

## Itaum liwnier 01698

## Mitur Carroll, Ray .J.

## Cerperato Aution

# Bepprot/Artich 7tin Typescript: Report \#1 (with typographical corrections), False Negatives and their Effect on Estimates of the Risk of Exposure to Agent Orange, August 1982 

## Jorus/tionk Itita

## Year <br> 0000

## Mraith/lay

## Color

## Humber of maxiss

## Doseripten Pat8s

REPORT \#1
(with typographical corrections)
PALSE NI:GATIVES AND THETR EFFECT ON ESTIMATES
of THE RISK OF EXPOSURE TO AGENT ORANG:
R.J. Carroll

August 1982

I am going to assume that a large random sample is taken from individuals known to be at risk (e.g. conbat troops) and that another large random sample is taken from those thought not to be at risk (rear-echelon troops). As explained to me, this is not really possible because only battalions and not individuals can easily be sampled for their exposure levels.

I will also assunce that all those reported to have been exposed actually were exposed: no false positives. A certain Craction $\delta$ are false negatives, i.e., if $\delta=.25,25 \%$ of those thought not to be at risk (exposed) actually were. These false negatives do have an effect on estimating risk of disease due to exposure.

Let $p_{1}=$ true probability of discase for exposed individuals, and let $p_{2}=$ true probability of disease for non-exposed individuals. The relative risk is defined to be

$$
r_{\text {true }}=p_{1} / p_{2}
$$

In practice we might get the following table:


The sample sizes $N_{1}$ and $N_{2}$ of those reported exposed and reported not exposed (respectively) have been fixed in advance. $N_{1}$ represents the nunber of "sick" individuals anong those reported exposed, while $N_{N E}$ is the number of "sick" individuals
among those reported not exposed. The observed relative risk can be computed by

$$
\hat{r}_{\text {observed }}=\frac{\left(N_{E} / N_{1}\right)}{\left(\mathrm{N}_{\mathrm{NE}} / \mathrm{N}_{2}\right)}
$$

Because of the false negatives, the observed relative risk estimates not the true value $r_{\text {true }}$ but rather

$$
\hat{r}_{\text {observed }} \approx \frac{r_{\text {true }}}{\delta \mathbf{r}_{\text {true }}+(1-\delta)}
$$

For example, if the true relative risk is 2.0 (exposed are twice as likely to be "sick" as non-exposed) and if we have a false negative rate of $25 \%$, then we would report a relative risk of only

$$
\hat{r}_{\text {obscrved }} \approx \frac{2}{(.25)(2 .)+(1-.25)}=1.6 .
$$

Another way to look at this example is as follows. Suppose $10 \%$ of the truly exposed become "sick." Since the true relative risk is 2.0 , only $5 \%=10 \%: 2.0$ of the truly non-exposed become "sick." llowever, because of the false negatives, we will announce that $10 \% \div 1.6=6.25 \%$ of the reported non-exposed become "sick."

TABLE 1 (Selected Values)


$$
\begin{aligned}
& \text { THE EFFECT OF FALSE } \\
& \text { NEGATIVES ON RELATIVE } \\
& \text { RISK. }
\end{aligned}
$$

Frye 1
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


```
\(p_{I}=P_{\mathbf{r}}\) (Sick/Exposed \()\)
\(\mathrm{p}_{2}=\mathrm{P}_{\mathrm{r}}\) (Sick/Not Exposed)
True relative risk of exposure is
, \(\quad \vdots_{\text {true }}=p_{1} / p_{2}\)
\(q_{1}=P_{r}\) (Sick/Reported Exposed \()\)
\(q_{2}=P_{r}(\) Sick/Reported Not fixposed \()\)
```

Suppose there are no false positives, i.e.,

```
Pr(Exposed/Reported Exposed) = 1.
```

Further, suppose a certain percentage of false negatives is possible, $\operatorname{Pr}($ Exposed/Reported Not Exposed $)=\delta$.

Then, the probabilities $q_{1}, q_{2}$ solve

$$
\begin{aligned}
& q_{1}=p_{1} \\
& q_{2}=\operatorname{Pr}(\text { Sick } / 1 \text { ipposed, Report Not Exposed }) \delta \\
&+\operatorname{Pr}(\text { Sick /Not Exposed, Report Not Exposed })(1-\delta) .
\end{aligned}
$$

If we further assume that whether the person becomes sick depends only on exposure and not on reported exposure, we get

$$
q_{2}=\delta p_{1}+(1-\delta) p_{2}
$$

Thus, by using the misclassified table, you will be estimating an observed relative risk of exposure as

$$
\begin{aligned}
x_{\text {obs }} & =\frac{q_{1}}{q_{2}}=\frac{p_{1}}{\delta p_{1}+(1-\delta) p_{2}}=\frac{\left(p_{1} / p_{2}\right)}{\left.\left.\left[\delta p_{1}^{+}\right) 1-\delta\right) p_{2}\right] / p_{2}} \\
& =r_{\text {truc }} /\left\{\delta r_{\text {true }}+(1-\delta)\right\}
\end{aligned}
$$

In this instance, the obscrved relative risk will underestimate the true relative risk, and this bias depends heavily on the false positive rate $\delta$.

What about the excess number of cases? Per 1,000 individuals,

$$
\begin{aligned}
& 1,000 \mathrm{p}_{1} \text { truly exposed become sick } \\
& 1,000 \mathrm{p}_{2} \text { truly not exposed become sick }
\end{aligned}
$$

True excess number/ 1,000 is

$$
1,000\left(p_{1}-p_{2}\right)=1,000\left(r_{\text {true }}-1\right) p_{2}
$$

Thus if $1 \%$ of the truly not exposed become sick and $r_{\text {true }}=2.0$, then from 1,000 truly exposed individuals we can expect 10 more sick persons than we can from 1,000 truly not exposed.

However, if we have a false negative rate of . 50 (50\%), then our estimated excess number will not be 10 but will be

$$
1,000\left(r_{\text {observed }}-1\right) p_{2}=1,000(1.33-1)(.01)=3.3
$$

(sce Table 2)
This is a rather dramatic difference.

A technical note. My definition of false negative is as on page 4 of Fleiss, not as on his page 135 (Section 11.2). His calculations in Section 11.2 are for a retrospective study (\# of sicks and wells fixed in advance).

TABLE 2 (More Decails than Table 1)

| True | False | Observed |
| :--- | :--- | :--- |
| Relative | Negative | Relative |
| Risk | Rate (Not $\%$ ) | Risk |
|  |  | 0.000 |
| 1 | 0.025 | 1.00 |
| 1 | 0.050 | 1.00 |
| 1 | 0.075 | 1.00 |
| 1 | 0.100 | 1.00 |
| 1 | 0.125 | 1.60 |
| 1 | 0.150 | 1.00 |
| 1 | 0.175 | 1.00 |
| 1 | 0.200 | 1.00 |
| 1 | 0.225 | 1.00 |
| 1 | 0.250 | 1.00 |
| 1 | 0.275 | 1.00 |
| 1 | 0.360 | 1.00 |
| 1 | 0.325 | 1.00 |

TABBA 2 (Nore Betails than Table 1) cont'd
True
Relative
Risk

False
Negative
Rate (Not \%)
Observed
Relative
Risk

| 0.150 | 1.00 |
| :---: | :---: |
| 0.375 | 1.00 |
| 0.400 | 1.00 |
| 0.425 | 1.00 |
| 0.450 | 1.60 |
| 0.475 | 1.00 |
| $0.5 c \mathrm{c}$ | 1.60 |
| 0.060 | 2. 00 |
| 0.025 | 1.95 |
| 0.05 C | 1.90 |
| 0.075 | 1.86 |
| 0.100 | 1.81 |
| 0.125 | 1.77 |
| 0.150 | 1.73 |
| 0.175 | 1.70 |
| 0.200 | 1.66 |
| 0.225 | 1.63 |
| 0.25 C | 1.60 |
| 0.275 | 1.56 |
| C. 3 cc | 1.53 |
| 0.325 | 1. 50 |
| 0.350 | 1.48 |
| 0.375 | 1.45 |
| 0.400 | 1.42 |
| 0.425 | 1.40 |
| 0.450 | 1.37 |
| 0.475 | 1. 35 |
| 0.500 | 1.33 |
| 0.000 | 3.00 |
| 0.025 | 2.85 |
| 0.05 C | 2.72 |
| 0.075 | 2.60 |
| 0.160 | 2.50 |
| 0.125 | 2.40 |
| 0.150 | 2.30 |
| 0.175 | 2.22 |
| 0.200 | 2.14 |
| 0.225 | 2.06 |
| 0.250 | 2. 60 |
| 0.275 | 1.93 |
| 0.360 | 1.87 |
| 0.3:5 | 1.81 |
| 0.350 | 1.76 |
| 0.375 | 1.71 |
| 0.400 | 1.66 |
| 0.425 | 1.62 |
| 0.450 | 1.57 |
| 0.475 | 1.53 |
| 0.560 | 1.50 |
| 0.000 | 4.00 |
| 0.025 | 3.72 |
| 0.056 | 3.47 |
| 0.075 | 3.26 |
| 0.150 | 3.07 |
| 0.125 | 2.90 |
| 0.150 | 2.75 |
| 0.175 | 2.62 |
| 0.200 | 2.50 |
| 0.225 | 2.38 |
| 0.230 | 2.20 |
| 0.275 | 2.19 |
| 0.35 C | 2.10 |
| 0.325 | 2.02 |
| C.35C | 1.95 |
| 0.375 | 1.80 |
| 0.400 | 1.81 |
| 0.425 | 1.75 |
| 0.450 | 1.70 |
| 0.475 | 1.64 |
| 0.500 | 1.60 |

Suppose we sample $N_{1}$ who are reported exposed and $N_{2}$ who are reported unexposed. What is the probability of detecting a relative risk different from $l$ if we ignore the effects of misclassification? For this prospective study, the usual test says (assuming a fairly large percentage (7.5\%) are diseased) says that the that the relative risk differs significantly from 1 if

$$
\begin{aligned}
\left|\log _{\mathrm{c}} \hat{r}_{\text {obs }}\right| & >1.96 \sqrt{\frac{\left(1-q_{1}\right)}{N_{1}}+\frac{\left(1-q_{2}\right)}{N_{2}}} \\
& =1.960\left(q_{1}, q_{2}, N_{1}, N_{2}\right)
\end{aligned}
$$

If the normal probability function is called $\phi$, the statistical power is

$$
\begin{array}{r}
2-\Phi\left(1.96-\left(\log _{\mathrm{e}} \mathrm{r}_{\mathrm{obs}}\right) / \mathrm{o}\left(\mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{~N}_{1}, \mathrm{~N}_{2}\right)\right) \\
-\Phi\left(1.96+\left(\log _{\mathrm{e}} \mathrm{r}_{\mathrm{obs}}\right) / \sigma\left(\mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{~N}_{1}, \mathrm{~N}_{2}\right)\right)
\end{array}
$$

Now,

$$
\log _{\mathrm{c}} \mathrm{r}_{\mathrm{obs}}=\log _{\mathrm{e}} \mathrm{r}_{\text {truc }}-\log _{\mathrm{c}}\left\{\delta \mathrm{r}_{\text {tue }}+(1-\delta)\right\}
$$

If $N_{1}=N_{2}$, then

$$
\begin{aligned}
o^{2}\left(q_{1}, q_{2}, N_{1}, N_{2}\right) & =\frac{1}{N}\left[\left(1-p_{1}\right)+1-\delta p_{1}-(1-\delta) p_{2}\right] \\
& =\frac{1}{N}\left[2-p_{1}-\delta p_{1}-(1-\delta) p_{2}\right] \\
& =\frac{p_{2}}{N}\left[\frac{2}{p_{2}}-(1+\delta) r_{\text {true }}-(1-\delta)\right]
\end{aligned}
$$

Hence the power of the usual test depends not only on the relative risk but also on the probability of discase in the truly unexposed population.

## APPENDIX $13(8 / 14 / 82)$

Suppose we observed a table such as


How can we estimate the true relative risk, and how much power do we have for detecting relative risks different from one? Recall, I am assuming $q_{2}$ is fairly large. From Appendix \#1 (8.14.82), page 4,

$$
r_{\text {true }}=\frac{(1-\delta) r_{\text {obs }}}{\left[1-\delta r_{\text {obs }}\right]}
$$

Since an estimate of $q_{1}$ is

$$
\hat{q}_{1}=N_{E} / N_{1}
$$

and an estimate of $q_{2}$ is

$$
\hat{\mathrm{a}}_{2}=\mathrm{N}_{\mathrm{NE}} / \mathrm{N}_{2},
$$

the estimate of $r_{o b s}$ is

$$
\hat{r}_{\text {obs }}=\frac{\hat{q}_{1}}{\frac{\hat{q}_{2}}{}}=\frac{\left(N_{E} / N_{1}\right)}{\left(N_{N E} / N_{2}\right)}
$$

and the estimate of $r_{\text {true }}$ is

$$
\hat{r}_{\text {true }}=\frac{(1-\delta) \hat{r}_{\text {obs }}}{\left[1-\delta \hat{r}_{\text {obs }}\right]}
$$

It turns out that $\log _{e} \hat{r}_{\text {true }}$ is almost normally distributed with mean $\log r$ true and variance
(*)

$$
\begin{aligned}
& \frac{\sigma^{2}\left(q_{1}, q_{2}, N_{1}, N_{2}\right)}{\left[1-\delta r_{o b s}\right]^{2}} \\
= & \sigma_{*}^{2}\left(q_{1}, q_{2}, N_{1}, N_{2}, \delta, r_{\text {obs }}\right)
\end{aligned}
$$

The power of the test for relative risk different from one is

$$
\begin{aligned}
& 2 . \phi\left(1.96 \cdots \log _{\mathrm{c}} \mathrm{r}_{\text {true }} / \sigma_{\star}\left(\mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{~N}_{1}, \mathrm{~N}_{2}, \delta, \mathrm{r}_{\text {true }}\right)\right) \\
& -\phi\left(+1.96+\log _{\mathrm{o}} \mathrm{r}_{\text {true }} / \sigma_{*}\left(\mathrm{q}_{1}, q_{2}, \mathrm{~N}_{1}, \mathrm{~N}_{2}, \delta, \mathrm{r}_{\text {true }}\right)\right.
\end{aligned}
$$

(Highly technical, but to keep all the details written down) [ want to show that
(*) is true. We have

$$
\begin{aligned}
& \log \hat{r}_{\text {true }}-\log \mathrm{r}_{\text {true }} \\
& =\left[\log \hat{r}_{\text {obs }}-\log r_{\text {obs }}\right] \\
& -\left[\log \left\{1-\hat{\delta} \hat{r}_{\text {obs }}\right\}-\log \left\{1-\delta r_{\text {obs }}\right\}\right] \\
& =\left\{\hat{r}_{\text {obs }}-r_{\text {obs }}\right\}\left\{_{r_{\text {obs }}}^{1}+\frac{\delta}{1-\delta} r_{\text {obs }}\right. \\
& =\frac{\left.\hat{r}_{\text {obs }}-r_{\text {obs }}\right\}}{r_{\text {obs }}} \times\left(\frac{1}{1-\delta r_{o b s}}\right\}
\end{aligned}
$$

