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1. INTRODUCTION

Following the results of ref (1) and what anticipated in
the last paragraph of that paper, the present report is
dealing with the rigorously mathematical and statistical problem
of finding the best methodological procedure to determine in
a way as unbiased as possible the quantity of TCDD deposited
on the ground within thelimits of the so-called 'zone-A" around
the Icmesa Factory in Seveso (Italy).

The main features of the problem have been anticipated in
ref. (1) here, in Section 2 we shall define our data sample
while in Section 3 we shall go through all major mathematical
aspects in order to prepare the actual procedure applied in
Section 4. Finally in Section 5 the graphycal result of the
interpolation is presented.

2. DEFINITION OF THE DATA SAMPLE

It is important to qualify and certify the data used in
the integration process: the data used are those obtained in
the 1976 Campaign (December '76) limited to zone A (for the
reasons given in ref. (1)).

The topographical distribution of the coordinates belon-
ging to the points in which the ground sample has been col-
lected is shown in fig. 1.

Zone A has an extention of about 1lKm 1in the East-West
direction and of about 2 Km in the North-South direction and the
collecting points follow ah approximately regular grid of
about 50 m x 50 m.

The values of TCDD concentration on the ground vary from
a minimum of 0.75 ug/m2 (corresponding to the detectable limit
of the analitical measurements-denoted as N.V.) and a maximum

of 5477 ug/mz.



aﬂﬁg

oo
ooDo
gpnon
Doco
pooooo O
oooooan
canooacg
opoo o
200900 ,
Dpogo
paagoo O
0 aoaz ¢
sogpcca 0
BoO0S03p 5o
oQnooooO 0o
sponDooDoO0as
0oEQUONOD OO
ubobooobo opo
30pDoDRooUDED QU oD
toogocouoG3o oo
oBD0200QOUOD DoOO0
o9o00DODDS DOBD
DpBUDDD NOU OoD0DD
i gogpopac pooo
N JooUoCpDano GoOJOD
oDodDOoodTa3L0CED D00
Opg00DJ3bODTDY sUpOoo
2030Co DODOD ODDODE
topogpnog Sobuon
DODDODDODDDOOD DD
DooapouogCcoon
g POUODDDDDO
D oogBoooooo
spbopoPoon
JoooonpoDdd
oD OD oo oDOng
cpooJaooonos
9000CODDOCODD
popbooBoCoo0

0D g3 ;00p00
000

Fig. 2.1: Every squares is the thopographycal rapresentation of the
single sample of the 1976 campaign.
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In order to take into account the main indications of a

(2)

previous analysis of the gverall TCDD distribution » in the pre
sent report we use as a quantifioatidn parameter the logarithm
of the TCDD density "since this is the quantity showing -a gaussian
distribution (see fig. 2.2) thus being the most suitable va-
riable to .be used in an optimization process.

With this variable,the contaminant ranges from a minimum
value of - 0.287 aln(ug/mz) and a maximum value of 8.608

ln(ugfmz)-

3. THEORY OF THE MATHEMATICAL METHOD

3.1 Introduction

In this 3ection we define the problem in its general
aspects and propose the algorithms which have been included
in the program used for the numerical solution of it.

Let D be the quantity bf TCDD under consideration which
depends upon the values directly measured of the location
&,y )which define the coordinate vector(hereafter referred to
as vector x = (x,y)).

Given a set of data providing the values Dj of the quan-
tity D(;) in several points x; = (xi,yi) in a 2-dimensional
space, our target will be to find a explicit function of the

independent vector-coordinate variable

y = £(x)
(3)

To this end a program will be used to find by means of

a least square fit,a reasonable approximation, of the type



n
D= %y ¢y £,(x) (3.1.1)
1

approximating the measured values D; distributed within the
set of measured coordinates (x,y).

In (3.1.1) ¢; are constant coefficients and fi(x) are
proper polynomial functions of the vector variable X5 -

The following Sections shall be devoted to the study of
the mathematical functions, to their choice and to the choice
(and definition) of the constant coefficients N

For sake of sempli¢ity we shall treat the case of a sin
gle independent variable x, which can be easily extended to a mo

re general multidimensional space x.

3.2 Approximation of an arbitrary function by means of a set

of given functions.

We propose the general problem of representing an arbitra
ry function f(x), by means of a finite number of functions
chosen Wwith a certain degree of arbitrarity, for instance po-

lynomial of increasing power such as:

po(x),'pl(x), pz[x), ..... pn(x) (3.2.1)

or rather by means of arbitrary linear combinations of the type:
Sn(X3=a°po(x)+a1p1(x)+a2p2(x)+ ..... +a p (x) (3.2.2)

where the coefficients a _can be choosen,within the linear combi

k
nation,in such a way that the difference

dn(x) = f(x)-Sn(x) (3.2.3)

be "the smallest possible" (in the most general sense still to

be discussed).



It is more than clear that the criterion of "small er
ror" as given by (3.2.3) is largely arbitrary and driven by the
principal interest of using the approximation Sn(x) instead of
the function f(x) (which might well be unknown).

Among the most frequently used criteria there is the least-
-square criterion which requires to minimize the average quadra
tic error in the range (a,b) for x

b
Lz, 1
d v L d_(x)

2 d4x (3.2.4)

that is to determine ay by means of a least square fit.

The use of a quadfatic form is largely considered an opti
mal application to the practical calculations. A least square
fit approximation may give locally large discrepancies but it
gives in general a rather accurate global representation of the

function f(x).

3.3 Conditions on the coefficents ak

2 be

The most obvious condition to be imposed is that an
the minimum possible as a consequence of the choice made on

By being anz a positive polynomial in the variables a,,a a

1" ""n
it indeed admits a minimum.
Thus zeroing the first derivatives with respect to a, we

shall obtain an unique solution corresponding to a minimum.

Thus:
2

adp _ _
’Fk'o xk=0,1,2,..., n (3.3.1)

From (3.2.4) and (3.2.3) we get, by deriving with respect to



a within the integral:

a&n2 1 (b d

bl = 2 [e0-s, 0] 5 feon -5, 00 ax -
_ 2a b
= b-a Jla -pk(x)[f(x)-sn(x)] dx (3.3.2)

k = 0,1,2....n

where we take advantage of the fact that the arbitrary function
f(x) is independent of ay s while Sn for the (3.2.2) depends li-
nearly on a, through the choosen polynomials p, (x).

Formula (3.3.1) thus becomes:

b

¢ b
L' pk(x)Sn(x)dx = L; pk(x)f(x)dx k=0,1,2,...n (3.3.3)

and, given the (3.3.2) for Sn(x), formula (3.3.3) assumes the

shape:

b b b
[ pk(x)f(x)dx=aO pk(x)po(x)dx+alf pk(x)pl(x)dx+ ...... +
a ‘a a
LI
+a, Llpk(x)pn(x)dx k=0,1,2,..,n (3.3.4)

or rather in a compact form, for any k:

b

f n b
Ja Pk(X]f(X)dx = gjaJ L pk(x)p:i {x)dx (3.3.5

We have thus obtained a linear system of (n+l) equations in the
(n+1) unknowas aj.

The solution of such a system is uniquely determined provided the



....... oo (3.4.1)

oooooooooo

this selections allows us to add the significant conditions

¢b
Japk(x)pj(x)dx =0 j>k,jk=0,1,2,...n (3.4.2)
It is important to note at this point that, as j and k are two
indices restricted by the relation k<j, but otherwise arbitrary
integers, eq. (3.4.2) must hold also when k and j are inter-

changed, i.e. k>j so that (3.4.2) implies a more restricted con

dition:
b A ORTHOGONALITY
| P (X)p;(x)dx = 0 j#k (3.4.3)
‘a _ CONDITIONS

Thus imposing the triangularization of the linear system
we authomatically obtain its diagonalyzation(sg“this is due to

the fact that the coefficient matrix |Cj {(3.3.7) is symmetric

K|
as it immediately appears by inspecting the definition (3.3.6}.

If the orthogonality conditions are verified by the system
of the pk(x) functions chosen as a basis for the approximation,

then the system (3.3.5) is now reduced to the form, for any k:



determinant of the coefficient matrix

b
ij = J; pk(x)pj(x)dx {3.3.6)

be different from zero; i.e.:
Det||ckj|1 £ 0 (3.3.7)
It has to be clear that, if n is large, the expression to solve

the system (3.3.5) which can be rewritten as:

5 k5% = R (3.3.8)

Rl o ]

b
p

where Fk = | pk(x]f(x)dx, may be anything but a simple problem,
J

In such a case the use of the approximation S§_(x) would be a

bad and unconfortable choice.(4)

3.4 Choice of the functions pk(x)

In order to overcome the difficulty we have to perform a
suitable choice on all possible functions {pk(x)} in such a way
that the solution of the system (3.3.5) be as simplified as pos
sible. |

Among the most interesting choices is a selection of the
functions pk(x) such that the system (3.3.5) be reduced to a

triangular form, without lack of generality. That is a selection

on the basis of which in the K-th equation only the un-

knowns aj with jgk appear,i.e.:
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b

b 2
N ! pk(x) dx = { pk(x)f(x)dx (3.4.4)
a

‘a
since only the integral having j=k turns out to be different

from zero in the left-hand side of (3.3.5).

It follows immediately then that ay is simply given by

b
f
a = ——;— | P ()£(x)dx  for any Kk (3.4.5)
N a
X
where
b .
N = [ P (x) ‘dx (3.4.6)
Ja

is apositive normalization constant; i.e. a positive number
which depends exclusively upon the functions pk(x) but not
upon the function f(x) to be approximated.

In this subsection we have thus reached the following re

sult: if the functions pij) are orthogonal (and it is always

possible to select a set of well known orthogonal fumctions)
the problem of approximating an arbitrary function f£(x) is sol-
ved by (3.4.4).

3.5 Legendre Functions and Tchebychev Functions

In the previous Sactions we have introduced the problem
of the least-square approximation and clearly underlined the
need to select a system of functions having the requisite of
obeying the orthogonality conditions since in such a case the
solution of (3.3.5) is particularly simplified.

The ortogonalization process suggested by Gram-Schmidt(4J
provides a tool to select fromamong a finite or an infinite
set of linearly independent functions defined in the range (a,b)

a set of functions which are orthonormal in (a,b).
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In this section we briefly propose two important and well
known orthogonal systems which will constitute the alternative
basis of our data handling.

The first system is provided by the Legendre polynomial(s’ﬁ)

functions. They are defined by the formula:

p (x) = Lgn-1;EZn-3)...1 0 _n(n-1} < z, (3.5.1)

2(2n-1)

and alternatively by the recurrence formula

_ 2n+l _
p(n+1)(x) T n+l ( x) n+1 n-l(x) {3.5.2)

from which the very first components are easily derived:

P (x) =1
p,(x} = x

1.,.2 c
pz(x) = E(Sx -1) (3.5.3)
py(x) = (5x>-3x)

It is of fundamental importance the result:
+1
[ p_ (xX)p_(x)dx = o m¥ n (3.5.4)
jy m n

which is a consequence of the orthogonality conditions. It implies

that the Legendre Polynomial Functions are orthogonal in the ran

ge (-1,+1).
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The second example of orthogonal system is provided by the

(6)

Tchebychev polynomial functions™ which-are defined by-fhe formula

tn(x) = cos (n cos-lx) (3.5.5)

From (3.5.5), by using the De Moivre Theorem and the Theorem on

the binomial's power we can rewrite:
Tn(x)=x“-(g)x“'z(l-x)2+(2}9'4(1-x)4+.... (3.5.6)

and alternatively write the recurrence formula:

(x) = 2x Tn(x) - Tn (3.5.7)

Tn+1 -1

from which the very first components can be easily derived

To(x) = 1
Tl(x) = X ,
Tz(x) = 2x -1
T3(x) 4x3-3x

(3.5.8)

The Tchebychev polynomial functions are orthogonal in the range

(-1,+1) since for m¥n

L Tn(OTa(x) 4y L g (3.5.9)
J

As a general matter, in a non-orthogonal model, in order
to estimate the value of a coefficient ay one has to know all the
other preceeding coefficients aj(j<k) as well as all the fol-
lowing coefficents ai(i>k) as one has to invert the matrix

{(3.3.6). In an orthogonal model, on the contrary, all coeffi-
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Cients can be separately evaluated since we are dealing with a
diagonal matrix. |

However an orthogonal model has to be preferred not only
for a matter of convenience and mathematical semplicity; the
method appears to be very sure against the dangerous round-off
errors which so often become relevant in computer working.

We conclode this section by stating that the Tchebychev
polynomal functions are practical tc minimize the MAXIMUM ER-
ROR, while the Legendre polynomial functions are practical to
minimize the ERROR OF THE MEAN.

3.6 Multidimensionl parametrization.

In this Section we indicate the most natural procedure to
extend the proceeding algorithm to an n-dimensional space,
limiting however one computation to the case under considera-
tion which requires a 2-dimensional space.

In our case, then, for the approximation of a two dimensig
nal function D{x,y) by means of a linear combination of Tcheby-

chev polynomial functions we can write:

B(x,y) = %‘l 121 Con Tp(x) Tpls) (3.6.1)
Let
a (x) =1 C T (x) (3.6.2)
n
Then we can write
D(x,y) = 2' a_(x) T (¥) (3.6.3)

m

Clearly in the two dimensional case a strategy for the selection

of the most convenient functions is needed, since all possible
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combinations'Tk(x)-Tj(y) constitute a very large variety of
possibilities, .

An obvious procedure, which incidentally economizes on
computer time, suggests to consider first the lower order fun
ctions; in addition, for each given function taken into account
prove if its contribution to the reduction of the squares of the
residuals is large enough (step by step improvement).

To prove this latter point, even using a non orthogonal
model, it is not strictly necessary to invert the matrix but an
orthogonalization can be reached by applying the Modified
Gram-Schmidt procedure}4)

In this way an orthogonal model is easily built in which
the potential reduction in the sum of the squared residuals
&S% is easily evaluated for the different choices of the fun-
¢tions fi’ in the available measured values of the represen-
tative function D(¥) to be approximated Di(xi,yi).

In summary we can handle our multidimensional approxima-
tion problem if we can reduce the large numbér of possible ar-
bitrary functions to a few dozens and if we can perform an or-
thogonal transformation able to reduce the approximation to
the one-dimensional case, which implies a single inversion of

a triangular matrix, at the most.

4, PSEUDOMEASUREMENTS.

4.1 Introduction

The data sample is provided by the 1976 campaign during
which carots have been collected every 50 m.

However in order to perform a two-dimensional fit the
starting sample has to be increased by producing new pseudo-mea

surements in a much denser grid. In fact for a convergent ap-
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proximation of the function D(x,y) described in Capt. 3 at least
50 measurements per coefficient is desirable.

Then our target here is to construct a new data sample
which preserves the structure and the characteristics of the
original one, by properly interpolating the TCDD values in in-
termediate points.

‘ The starting experimental data are not sufficient to gua-
rantee the applicability of the model; from them the results

obtainable in a straight forward way are those of Ref. 1.

4.2 General Comments on the Interpolated data.

The interpolation needed to guarantee a sufficient number
of starting measurements in order to perform the approximation
of D(x,y) is based on the following procedure:

given in a limited region of the x,y plane a number of mea
surements Di(xi,yi) in the points (xi,yi), look for a function
g(x,y) able to designate a reasonable value of D in any arbitra
Ty point (X,y).

The domain iN which our experimental function is defined
has a non-geometrical form (since the limits of zone A are ir
regular as we€ll as the distribution of the original measurement
points (xi,yi))-Then we replace the contour with a rectangle
subdivided into a regular grid both in x and y. The crossing
points of the new grid are the reference points in which we in-
tend to evaluate the new interpolating function g(x,y}.

Two basic methods provide a solution of the problem:

- the first one consists in building a function g which interpo

lates exactly the measured values, 1i.e.:
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g(xi,yi) = Di i=1,2,....,n (4.2.1)

This method gives excellent results only when the values

Di are known with high accuracy;

- The second method consists in building a function g as a
weighted average of the experimental observations and it is
desirable when the starting experimental data are likely to
be subject to inaccuracies and large unavaidable fluctuations.
Due to the nature of our data we choose the weighted interpo-

(ya)andireéentiy used by others(/D»C»d)

lation,suggested by D.Shepard
Essentially the weightéd interpolation of sparse data
irregurarly scattered can be represented by the following for
mula:
n
L Dyx
(x ) = k=1

W(rk)

) i,j = 1,2,...n (4.2.2.)
X

where:

Dkk is the measured value in the point (xk,yk)
W[rk)is a proper weighting function

Ty is the distance between the points (xk,yk) and (xi,yj]

Note that the wvalue g(xi,yj) represents the weighted avera
ge of the observations of the entire sample in the case of a
""global interpolation'; it represents the weighted average va-

lue of the gorroundings observations for a '"local" interpolation.



17.

4.3 Shepard's Method

)

The Shepard's interpolation methodf?a in its general form 1is

applicable to - measurements arbitrarily scattered.

Given in the plane a point (x,y), let ry be the distance
between (x,y) and the n points(xi,yi) in which measurements
have been made, for any i = 1,2,...n.

The Shepard's interpolation formula reads:

By W)

2 1 .
glx,y) = - | if r #0
z, W (r,)
1t T (4.3.1)
g(x,y) =D (xi,yi) if r, =0

Note that (4.3.1) 1is defined in all points of the plane

R2 and that it interpolates exactly the values Di in the given

points (xi,yi), while the value g(x,y) in the '"new points” is

given as the weighted average of all given measurements. The
contribution of the i-th measurement is weighted as a function
of the distance between the point (x,y) under consideration and
the given points (xi,yi).

It is obviously inconvenient to use this method whenn 1is
very large; however in such a case the method would not be
needed.

Furthermore the method increases in selectivity when the
interpolation is performed in local form.

Let us fix a radius R>0 and define a weighting function
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W{r) = W(r) if r ¢ R

(4.3.2)
W(r) = 0 ifr >R
Thus in the local form formula (4.3.1) becomes:
n
g(x,y) = =] if r; < R (4.3.3)
Z. W (r.)
11 1
g(x,y) = 0O if r 8 R

Formula (4.3.3) is still defined in every point of the

plane, but now the value of the function in the point (x,y) is

given by the weighted average of the measurements D(xi,yi) only

in the neighbouring circle of radius R.

Therefore the problems is now lying in a reasonable choice
of the values for the cut-off radius R in such a way that for
any point (x,y) of the plane there is an adeguate number of
measurements included in a circle of radius R, so as to compen-
sate fluctuations.

This second method opens up the new possibility of choosing
different values of R, in different regions of the domain
within which D(x,y) is defined.

Theoretically the choice of R, in this kind of procedure
depends upon the statistical sample under consideration.

In our particular case we want to define a variable R de-
pending upon the distance from the ICMESA Factory having in mind
both the topographycal distribution of the measurement points

and the TCDD concentration. Infact maximal TCDD concentration is
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found immediately around ICMESA and, due to the transport
phenomenon caused by the wind, along a maximum concentra-
tion bound(s) in the south-east direction, while, perpen-
dicular to such a line and away from it the TCDD concentra
tion values are significantly decreased.

Therefore the choice for R has been done in order to

maintain these particular characteristics.

4.4 Choice of the Weighting functions W(r)

In the practical case with which we are dealing we wish
to introduce weighting factors W(r) able to preserve stati-
stically the same characteristics of the original sample, a
point which has been clearly pointed out from the beginning.

The choice is suggested by the successfull use, (found in

(7)

the literature) in metheorology to solve analogous problems
such as, for instance, the distribution of the ozone concen-
tration in the bay around Los Angeles (U.S.A.). A reference

-
to the papers by Gustafson, Kortanek, Sweigart('bJ

, Goodin,
McRae, Seinfe1ld’S) and by Glahn‘’®)is imperative.

To perform the calculations of Sect.5 we have selected
three weighting functions.

The first choice is:

Rz-rz
W(r) = (4.4.1)
2
R +r
The second is:
W(r) = [‘I+T(r)] s%(r) (4.4.2)
where
S(r) =-:Ilj if 0<r.g-P3-{-
27 {R-r}? .. R
S(r) = R if <rgR

having defined
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m
L St(r)(l-cosa]

T(r) = °=1 (4.4.3)

-1 3

SL(T)

in which:
- m is the number of measurement points lying within the disk
of radius R

- o 1s the angle defined by the segment (see fig. 4.1)

(Xk,}’k}‘(xi,}’j] and (xi’yj}_(xl’le

ICMES A

WA X UM
CORCENTRATION
LIKE

<)

Fig. 4.1 -
the third choice is
wW(r) = (1+T(r1)52(r) -
R2 2
S(p) = R X (4.4.4)
2. 2
R +p Fig. 4.2

T(r) as defined by (4.4.3)

In the first choice, formula (4.4.1), the weighting factor
depends only on the distance between the point {x,v) in which
we want to construct a pseudo-measurement and the original mea
surement-points (xryi) falling within the disk of radius R.

In the other two methods a directional dependence 1is also
included by (4.4.3).

In all 3 methods R is variable in the plane according to
the increase in the width of the contaminating cone 1n the wind
direction along the maximum contamination linegg)(see fig.4.2)

All the three formulae {4.2.1); (4.4.2) and (4.4.3) give
final samples which are well compared in their global characte

ristics with the real data.
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As an example fig.4.3 and fig.4.4, obtained with the pro-
gram HBOOK(gJ, give the scatter plots of the original data
while fig.4.5 and fig.4.6 give the scatter plots of the enri
ched sample using (4.4.2). These are not topographycal maps;
in fig.4.3 In(TCDD) is plotted versus x and in fig.4.4 1n(TCDD)
1s plotted versus y for the original data sample.

Comparing fig.4.3 with fig.4.5 the density of points are
different but the structure of the two data samples is the
same; points with large TCDD values around 5000 ug/mzaexp(S.SJ
ug/m2 are very few and have small abscissa x (see fig.2.1 for
the definition of the reference frame)} while the majority of
the points have values between 2.7 ug/ngexp(T.O) and 150 ug/
mzaexp{S.O).

Comparing fig.4.4 with fig.4.6, the points with large TCDD
values are fewer and located at large y coordinates (close to
the Icmesa Factory in the reference frame of fig.Z.I). Further
more one can notice that the granularity of the information is
increased but that in the regions where there was no data in
fig.4.4, no pseudo-data have been invented in fig.4.6; an ob-
servation supporting the adeguateness of the Shepard's method
to our goal.

In conclusion we wish to point out that (4.4.4) contains
the maximum "a priori" information that can be extracted from
the original data sample as a guide~line to the finding of

the approximating function D(x,y).
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5. GRAPHICAL REPRESENTATION OF THE RESULTS

5.1 Introduction

In this final Section we shall present the results of our
investigation by showing the quantitative solution of the ap-
proximation of the contaminant distribution in zone A by means
of the analytical function built with a number of Tchebychev
polynomials.,

Two different presentations of our results will be given:

1 - a quantitative presentation of the coefficient for the dif
ferent polynomials and the confidence parameters

2 - a graphycal drawing of a 3-dimensional surface as seen from
different perspective points describing the TCDD distribu-
tion in a rectangle containing zone A, using the program
SURFAC(IO).

We have checked the goodness of the model adopted and com-
pared our results with those obtained in previous investigations
(8’11-14). The model is adequate and several characteristics,

already pointed out by others, are verified.

5.2 Numerical results of the approximation

The data constructed with the interpolation methods descri-
bed in Sect.4 have been used as input to the program MUDIFI
(Muiti-Dimensional-Fitting). The principal algorithms have
been outlined in Section 3.

The program allows to fix the number of coefficients a

k
that we want to introduce in the final form (3.1.1) and gives

the possibility to specify if the approximation has to be per
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formed with functions product of simple monomials in the two
variables x and y or rather with orthogonal polynomial forms
such as, for instance, the Tchebychev functions of Sect.3.5.

We havé, thanks to the Shepard me;hod, a relevant number
of input points; thus the goal of a rather accurate represen
tation of the unknown function y(x,y) measured in n points
yi=Di(xiyi) can be reached by using as many as 30 free parame
ters {(coefficients ap } to build the approximant function D{(x,y).

We show in the present paper only the results obtained by
the use of the Tchebychev orthogonal polynomial (3.5.5) (3.5.6)
(3.5.7) and (3.5.8) mentioned in Sect.3, and on the interpola-
tion method, mentioned in Sect.4, using only the formula (4.4.4)€14)

The all procedure however has been applied also using the
Legendre polynomial(14).

Due to the particular nature of the experimental data which
often show large fluctuations even between very close points,
and due to the very large ratio between the '"area of zone A"
and the '"total area of zone A submitted to the contamination
analysis', the results of our approximation can be considered
as sufficiently good.

in Table 5.1 the values of the residuals for each of the
coefficients are collected and the corresponding reductions
together with the value of the multiple correlation coefficient
C are given.

Table 5.2 collects in the first column the values obtained

for the 30 coefficients a in the second column the variance

k,
and in the third column the degree of the Tchebychev polynomials
to which they refer.

As an explicative example, the second line quotes the coe-

fficient a1(c01.1)=(0.?59 ¥ 0.140) related to the combination
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(¢col.3) 0Ol. This means that ay refers to the product To(x)Tl(Y)"

The second coefficient (line 3) is related to the combination

20 which means that a, refers to the product T,(x) To(y).

2
Explicitely:
D(x,y) = (2,61% .183)+(.759% .14)T (x)T,(y)- (5.2.1)
- + ' _
(0.268 .lOl)Tz(x)To(y) ....+aijTi(x)Tj(y)
and from (3.5.8):
D(x,y) = (2.61% .183)+(.759% .140)y-(0.268% ,101).
(2% -1+ ..l (5.2.2)

The parameter C of Table 5.1 gives aen indication for the
goodness of the approximation. The closer C is to unity, the
better the fit can be considered.

As one can notice in Table 5.1, colum 5, tihe sum of the
residuals 1s reduced by about a factor 10 per coefficient; the
multiple correlation coefficient is~0.87 close enough to 1.0
for our purposes. Finally in Table 5.2 the errors on the diffe
rent coefficients are very reasonable.

As a matter of principle the "mathematical" result could
improve for instance by allowing a larger number of coefficents,
which would require a larger number of data points. Alternative
ly we could "eliminate" some '"bad point" giving a value of
TCDD drastically different from the nearby values and refle-
cting an anomalous large fluctuation.

In this paper however by all means we do want to give an
unbiased interpolated déscription without any arbitrary elimi
nation of any value.

Therefore we cl aim that the result presented is the best

possible in the given circumstances.

PR e 3 o vy



Cco

EFF

NO

7 B BN I O A I S N

SUM OF SQUARES
OF RESIDUALS

0.35346308574E+04
0.2996910889E+04
0.2429095947E404
0.2265266357E+04
0.209986108B4E+04
0.1831718872E+04
0.1688964111E+04
0.1548103638E+04
0.1356953413E+04
0.105146286462E404
0.9939321899E+03
0.96102008056E+03
0.8918%918457E+403
0.8129%42017E403
0.7688598433E+03
0.73501573486E+03
0.7405953979E+03
0.7146528418E+03
0.6897740479E403
0.8724725342E+03
0.6638720093E403
0.60754923774E403
0.59906435874E403
0.5884318848E403
0.5616769409E403
0.5530008714E+03
0.543791503%E403
0.33156053469E4+03
0.5212128906£+03
0.5128872681E403

MULTIPLE CORRELATION COEFFICIENT

Tab.

.1

W(r):[S(r)]2(1+T{P)}

S(r}=

2 2

R - r

2
R + r

REDUCTION OF
0F SQUARES

0.3754131773E+403
0.G3IPIP77661E403
0.5678148804E+03
0.1438295898E403
0.1654051971E403
0.2681422729E+02
0.,1427547302E+03
0.120B805042E+03
0.2111499785E+03
0.3053250122E+403
0.9769648743E+402
0.32912810556E+02
0.6912B26538E+402
0.7889766693E+0C2
0.,4413433BIBE+02
0,1870242748E402
0.9561931610E+01
0.299325408PE+02
0.24888786432E+02
0.1730154228E+02
0.8600533485E+01
0,9632264328%+02
0.,848274B059E401
0.1063469791E+02
0.26754%6292E402
0.867425331%E+01
0.92091817846E+01
0.1223097420E402
0.1034767246E402
0.8325633049E+01

Results of the function weight

0.8468885E+00

29,



Tab.

COEFFICIENTS

0

e B = N RN B

5.2: Results of the function weight W(r)=[5(r112(1+T(r))

VALUE

0.2611816404E+01
0.7591783404E400
~0,2681191862E400
-0.882730662BE+00
~0,4400894044E-01
0.5425338745E400
0,56950988173E+00
0.6278941631E400
0.5745822191E400
0.2406100035E400
0.1857445333E+00
-0,3786304593E400
0,3746468425E+00
0.2251543403€400
0,6250208616E+00
0.39243464600E+00
0.2824673951E+00
0.4311328530E+00
0.6149656773E+00
0.6629428864E400
~0,4905254394E-01
~0.5814285874E400
-0,6244755387E+00
-0,6606221199€-01
0.2131620049E+00
-0.3547884055E+00
-0,1992565244E400
0,5482710898E~02
-0.2291990817E+00
0.1528140404E+00
~0.1678609997E400

VARTANCE

0.182943FE+4+00

"0.140330E+00

0.100%6BE400
0.479781E+00
0.1146808E+0Q0
0.,242769E+00
0.129215E400
0.132157E+00
0.9744674E-01
0.138151E400
0.566410E-01
0.667838E-01
0.998844E-01
0.917134E-01
0,762477€~01
0.2991992E+00
0.14%7461E+00
0.224734E4+00
0.199B75E400
0.532743E-01
0.121924E+00
0.993173FE-01
0.4462425E-01
0.7004691E-0)
0.746564RE-01

0.877238E-01

0.753213E-01
0.666651E-01
0.782392E-01
0.760031E-01

FOWERS OF VARIAELES
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5.3 Graphycal Results of the approximation.

Having obtained the analytical form of the function
D(x,y) completing (5.2.2) with all the terms indicated in
Table 5.2 (that is having obtained the mathematical descri
ption of the TCDD distribution on the ground),we can graphy
cally visualize the result soas to give a direct check of
the overall properties of the distribution function and of
the approximation procedure adopted. (The graphycal visua- .
lization could also suggest general comments on the topogra
phycal distribution in comparison with the equal density line
description given in ref.8).

To solve the graphycal problem,we have used the program
SURFAC(IOI It is a multipurpose program which produces a
prospectic view of a function givén in cartesian coordinates.

The resulting figure draws the intersections of the sur
face with parallel planes orthogonal to the axes. To obtain
the visualization of possible "hidden points" of the surface
it is possible to rotate the entire figure by a variable an-
gle (which can be properly chosen) from -90° and #90°.

In fig.s 5.1, 5.2,5.3,5.4 the function D(x,y) given by

(5.2.2) is shown from different points of view under different

angles. The vertical axis {ln TCDD concentration) is not rele-

vant here and is reported only on fig. 5.1.
Let us comment on fig: 5.1 which shows the function rotated

by 30° clockwise with respect to the North-South direction.

31.

We can clearly notice that there are two pronounced peaks

in the vicinity of the ICMESA Factory; then the function decre

ases along the y axis maintaining however large TCDD values
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along the well defined band of maximum concentration mentio-
ned in Sect. 4.4 and determined in ref. 8 .

Note that zone A is included in the rectangle (fig.5.1); the
contours of the function are not always slowly degrading but
show secondary maxima. This is due to the fact that the analy
sis has been limited to zone A ﬁhere the TCDD concentration is
maximal, but which does not cover all the domain of the conta
minated region. Nonetheless, the secondary maxima are not very
relevant and coincide with those shown in ref.8 .

Fig. 5.3 seen from,an angle of 60° clockwise, shows the
surface from a direction almost perpendicular to the maximum
concentration line.

Fig. 5.4, seen from an angle of 60° counterclockwise,
shows the surface almost along the maximum concentration line
clearly showing the decrease of the TCDD concentration with the
distance from the ICMESA Factory.

It is important to point out that the weak points of
the analysis is concentrated at the boundaries. There the
number of measured points is small.

It is however interesting to note that,in spite of this
the surface is satisfacorily reproducing the known overall
characterics of the distribution (even if the knowledge is re-
latively scanty).

A quick subdivision of zone A into small rectangles gives
the average TCDD concentrations reported. in Table 5.3.

The graphycal description reproduces also quantitatively
the numerical description.

We can thus conclude that the empirical model proposed in this

paper is adeguate to reproduce the reality with sufficient accu




racy and proves that the approach used may be interesting

for applications to similar problems.

5.4 Concluding remarks

The analysis performed in this paper is one of the possi-
ble investigations which can be performed in comnection with
the ICMESA accident. Although with a much lower significance
one could extend the analysis to all the contaminated region
taking nontrivial risks, but providing a tentative complete
mathematical description of the phenomenon.

We certainly believe that the procedures used could be
applied to similar cases since, by using relatively simple
and handy mathematical formulae it is possible to build a
descriptive function over a given geographycal extension of
an area interested by a measured phenomenon, putting in evi-
dence both the global and local characteristics of the measu
rement.

As of the value of the integral we prefer to be as cautious
as possible.

As explicitely stated in ref.8 and in ref.1 the multipli-
cation factor between analyzed area and contaminated area is
R=3.04x105 for zone A.

This imposes a priori an enormous incertainty on any possi
ble result. The numerical integration performed here is however
the best mathematical calculation which can be performed, given

the original measurements.
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TCOD=| TCOD=
3.720 4.104
TCDD=| TCDD=|TCDD=| TCDD=
1.741 5.081 2.102 0.312
TCDD=|{TCDD= |TCDD= |TCDO=
0.684 4,116 3.589 1.185
| TCDD=|TCDD=(TCDD=|TCDD=
2.502 2.911 3.811 1.702
TCDD=| TCDD=|TCDD=|TCDD=
2.890 2.233 2.657 2.167
TCDD=|TCDD=|TCDD=
2.015 2.371 2.752

" Table 5.3: Aversge concentrations of the logarithm of TCDD
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