

# Uploaded to the VFC Website February 2014

This Document has been provided to you courtesy of Veterans-For-Change!

Feel free to pass to any veteran who might be able to use this information!

For thousands more files like this and hundreds of links to useful information, and hundreds of "Frequently Asked Questions, please go to:

# Veterans-For-Change

Veterans-For-Change is a A 501(c)(3) Non-Profit Organizaton Tax ID #27-3820181 CA Incorporation ID #3340400 CA Dept. of Charities ID #: CT-0190794

If Veterans don't help Veterans, who will?

We appreciate all donations to continue to provide information and services to Veterans and their families.

https://www.paypal.com/cgi-bin/webscr?cmd=\_s-xclick&hosted\_button\_id=WGT2M5UTB9A78

**Note**: VFC is not liable for source information in this document, it is merely provided as a courtesy to our members & subscribers.



| Table 10. Continueu | Tab | le | 10. | Continued |
|---------------------|-----|----|-----|-----------|
|---------------------|-----|----|-----|-----------|

| Parameter    | Analytic                   | unit  | Result: E11-121-S2 |             | Compare: Primary vs. Dup |           |            |
|--------------|----------------------------|-------|--------------------|-------------|--------------------------|-----------|------------|
| Parameter    | Analyte                    | UIIIL | Primary            | Primary Dup | Ratio                    | Criteria  | Evaluation |
| Dioxin       | 1,2,3,4,6,7,8-HpCDD        | pg/g  | 0.287 J            | < 2.68      | -                        | -         | Agree      |
|              | 2,3,7,8-TCDF               | pg/g  | 0.246 J            | 0.325 J     | 0.76                     | 0.33-3.00 | Agree      |
|              | OCDD                       | pg/g  | 15.9               | 19.7        | 0.81                     | 0.25-4.00 | Agree      |
| OC Pesticide | gamma-BHC (Lindane)        | µg/kg | 2.2 J              | 2.74 J      | 0.80                     | 0.33-3.00 | Agree      |
| VOC          | 2-Butanone                 | µg/kg | 2.21 J             | 5.16 J      | 0.43                     | 0.33-3.00 | Agree      |
|              | Acetone                    | µg/kg | 12.2 J             | 28.3 J      | 0.43                     | 0.33-3.00 | Agree      |
|              | Methyl iodide              | µg/kg | < 4.75             | 0.828 J     | -                        | -         | Agree      |
|              | Methylene chloride         | μg/kg | 1.05 J             | 1.47 J      | 0.71                     | 0.33-3.00 | Agree      |
|              | Tetrachloroethene          | µg/kg | 4.28 J             | 2.55 J      | 1.68                     | 0.33-3.00 | Agree      |
| SVOC         | Bis(2-Ethylhexyl)phthalate | µg/kg | 30.7 J             | < 342       |                          | *         | Agree      |
| Metal        | Arsenic                    | mg/kg | 4.83               | 6.31        | 0.77                     | 0.50-2.00 | Agree      |
|              | Barium                     | mg/kg | 409                | 941         | 0.43                     | 0.50-2.00 | Disagree   |
|              | Cadmium                    | mg/kg | 0.847              | 0.902       | 0.94                     | 0.50-2.00 | Agree      |
|              | Chromium                   | mg/kg | 4.17               | 5.36        | 0.78                     | 0.50-2.00 | Agree      |
|              | Lead                       | mg/kg | 9.37               | 9.65        | 0.97                     | 0.50-2.00 | Agree      |
|              | Mercury                    | mg/kg | 0.00109 J          | < 0.0198    | ~                        | -         | Agree      |
|              | Selenium                   | mg/kg | 1.35 J             | 1.85        | 0.73                     | 0.33-3.00 | Agree      |
|              | Silver                     | mg/kg | 0.509 J            | 0.853 J     | 0.60                     | 0.33-3.00 | Agree      |

| Davamatari   |                     |       | Result: E11-133-S2 |             | Compare: Primary vs. Dup |           |            |
|--------------|---------------------|-------|--------------------|-------------|--------------------------|-----------|------------|
| Parameter    | Analyte             | unit  | Primary            | Primary Dup | Ratio                    | Criteria  | Evaluation |
| Dioxin       | 1,2,3,4,6,7,8-HpCDD | pg/g  | 0.305 J            | 0.217 J     | 1.41                     | 0.33-3.00 | Agree      |
|              | 2,3,7,8-TCDF        | pg/g  | 0.28 J             | 0.235 J     | 1.19                     | 0.33-3.00 | Agree      |
|              | OCDD                | pg/g  | 19.7               | 7.14        | 2.76                     | 0.25-4.00 | Agree      |
| OC Pesticide | 4,4'-DDT            | µg/kg | < 10.2             | 2.99 J      |                          | -         | Agree      |
| VOC          | Acetone             | µg/kg | 12.3 J             | 9.08 J      | 1.35                     | 0.33-3.00 | Agree      |
|              | Methylene chloride  | µg/kg | 1.68 J             | 1.3 J       | 1.29                     | 0.33-3.00 | Agree      |
|              | Toluene             | µg/kg | < 4.83             | 1.29 J      | -                        | -         | Agree      |
| Metal        | Arsenic             | mg/kg | 5.52               | 4.18        | 1.32                     | 0.50-2.00 | Agree      |
|              | Barium              | mg/kg | 134                | 92.8        | 1.44                     | 0.50-2.00 | Agree      |
|              | Cadmium             | mg/kg | 0.776              | 0.591       | 1.31                     | 0.50-2.00 | Agree      |
|              | Chromium            | mg/kg | 3.98               | 3.95        | 1.01                     | 0.50-2.00 | Agree      |
|              | Lead                | mg/kg | 10.2               | 7.75        | 1.32                     | 0.50-2.00 | Agree      |
|              | Silver              | mg/kg | 0.35 J             | 0.153 J     | 2.29                     | 0.33-3.00 | Agree      |

| Table | 10. | Continued |
|-------|-----|-----------|
|       |     |           |

|              | arameter Analyte   |       | Result: E11-128-S2 |             | Compare: Primary vs. Dup |           |            |
|--------------|--------------------|-------|--------------------|-------------|--------------------------|-----------|------------|
| Parameter    |                    | unit  | Primary            | Primary Dup | Ratio                    | Criteria  | Evaluation |
| Dioxin       | 2,3,7,8-TCDF       | pg/g  | 0.253 J            | 0.307 J     | 0.82                     | 0.33-3.00 | Agree      |
|              | OCDD               | pg/g  | 2 J                | 1.63 J      | 1.23                     | 0.33-3.00 | Agree      |
| OC Pesticide | 4,4'-DDT           | µg/kg | 1.45 J             | 1.29 J      | 1.12                     | 0.33-3.00 | Agree      |
| VOC          | Acetone            | µg/kg | < 41               | 10.4 J      | -                        | -         | Agree      |
|              | Methylene chloride | µg/kg | 1.42 J             | 2.08 J      | 0.68                     | 0.33-3.00 | Agree      |
| Metal        | Arsenic            | mg/kg | 2.59               | 3.09        | 0.84                     | 0.50-2.00 | Agree      |
|              | Barium             | mg/kg | 96.9               | 66.2        | 1.46                     | 0.50-2.00 | Agree      |
|              | Cadmium            | mg/kg | 0.861              | 0.637       | 1.35                     | 0.50-2.00 | Agree      |
|              | Chromium           | mg/kg | 2.93               | 2.33        | 1.26                     | 0.50-2.00 | Agree      |
|              | Lead               | mg/kg | 15.9               | 10.5        | 1.51                     | 0.50-2.00 | Agree      |

|           |                            | unit  | Result: E | 11-147-S2   | Compare: Primary vs. Dup |           |            |
|-----------|----------------------------|-------|-----------|-------------|--------------------------|-----------|------------|
| Parameter | Analyte                    | unit  | Primary   | Primary Dup | Ratio                    | Criteria  | Evaluation |
| Dioxin    | 1,2,3,4,6,7,8-HpCDD        | pg/g  | < 2.62    | 0.277 J     | -                        | •         | Agree      |
|           | 2,3,4,7,8-PeCDF            | pg/g  | < 2.62    | 0.0745 J    | -                        | -         | Agree      |
|           | 2,3,7,8-TCDF               | pg/g  | 0.211 J   | 0.158 J     | 1.34                     | 0.33-3.00 | Agree      |
|           | OCDD                       | pg/g  | 4.37 J    | 5.97        | 0.73                     | 0.33-3.00 | Agree      |
| VOC       | Acetone                    | µg/kg | 12.8 J    | 8.05 J      | 1.59                     | 0.33-3.00 | Agree      |
|           | Methylene chloride         | µg/kg | 1.72 J    | < 19        | -                        | -         | Agree      |
|           | Toluene                    | µg/kg | 0.89 J    | 0.943 J     | 0.94                     | 0.33-3.00 | Agree      |
| SVOC      | Bis(2-Ethylhexyl)phthalate | µg/kg | 91.7 J    | 53 J        | 1.73                     | 0.33-3.00 | Agree      |
| Metal     | Arsenic                    | mg/kg | 1.22      | 0.829 J     | 1.47                     | 0.33-3.00 | Agree      |
|           | Barium                     | mg/kg | 65.6      | 61.7        | 1.06                     | 0.50~2.00 | Agree      |
|           | Cadmium                    | mg/kg | 0.699     | 0.598       | 1.17                     | 0.50-2.00 | Agree      |
|           | Chromium                   | mg/kg | 3.86      | 3.66        | 1.05                     | 0.50-2.00 | Agree      |
|           | Lead                       | mg/kg | 4.09      | 3.33        | 1.23                     | 0.50-2.00 | Agree      |
|           | Selenium                   | mg/kg | < 1.96    | 0.46 J      | -                        | -         | Agree      |

|           |                    |       | Result: E | Result: E11-123-S3 |       | Compare: Primary vs. Dup |            |  |
|-----------|--------------------|-------|-----------|--------------------|-------|--------------------------|------------|--|
| Parameter | Analyte            | unit  | Primary   | Primary Dup        | Ratio | Criteria                 | Evaluation |  |
| Dioxin    | 1,2,3,7,8-PeCDF    | pg/g  | < 2.64    | 0.13 J             |       | -                        | Agree      |  |
|           | 2,3,7,8-TCDD       | pg/g  | 0.11 J    | < 0.506            | -     | -                        | Agree      |  |
|           | 2,3,7,8-TCDF       | pg/g  | 0.381 J   | 0.269 J            | 1.42  | 0.33-3.00                | Agree      |  |
|           | OCDD               | pg/g  | 3.14 J    | 2.98 J             | 1.05  | 0.33-3.00                | Agree      |  |
| VOCs      | Acetone            | µg/kg | 10 J      | < 43.5             | -     | -                        | Agree      |  |
|           | Methylene chloride | µg/kg | 1.22 J    | 0.862 J            | 1.42  | 0.33-3.00                | Agree      |  |
| Metals    | Arsenic            | mg/kg | 4.12      | 2.96               | 1.39  | 0.50-2.00                | Agree      |  |
|           | Barium             | mg/kg | 107       | 86.1               | 1.24  | 0.50-2.00                | Agree      |  |
|           | Cadmium            | mg/kg | 0.389 J   | <0.516             | -     | u.                       | Agree      |  |
|           | Chromium           | mg/kg | 1.83      | 1.57               | 1.17  | 0.50-2.00                | Agree      |  |
|           | Lead               | mg/kg | 7.72      | 4.7                | 1.64  | 0.50-2.00                | Agree      |  |

|           |                     | 11    | Result: E11-120-S2 |          | Compare: Primary vs. QA |           |            |
|-----------|---------------------|-------|--------------------|----------|-------------------------|-----------|------------|
| Parameter | Analyte             | Unit  | Primary            | QA       | Ratio                   | Criteria  | Evaluation |
| Dioxin    | 1,2,3,4,6,7,8-HpCDD | pg/g  | 0.315 J            | <5.3     | -                       | -         | Agree      |
|           | 1,2,3,4,6,7,8-HpCDF | pg/g  | 0.27 J             | <5.3     | -                       | -         | Agree      |
|           | 1,2,3,4,7,8-HxCDF   | pg/g  | 0.104 J            | <5.3     | -                       | -         | Agree      |
|           | 1,2,3,6,7,8-HxCDF   | pg/g  | 0.107 J            | <5.3     | -                       | -         | Agree      |
|           | 1,2,3,7,8,9-HxCDF   | pg/g  | 0.182 J            | <5.3     | -                       | -         | Agree      |
|           | 1,2,3,7,8-PeCDD     | pg/g  | 0.107 J            | <5.3     | ~                       | -         | Agree      |
|           | 1,2,3,7,8-PeCDF     | pg/g  | 0.136 J            | <5.3     | -                       | -         | Agree      |
|           | 2,3,4,7,8-PeCDF     | pg/g  | 0.0882 J           | <5.3     | -                       | -         | Agree      |
|           | 2,3,7,8-TCDF        | pg/g  | 0.336 J            | 0.45 J   | 0.75                    | 0.33-3.00 | Agree      |
|           | OCDD                | pg/g  | 5.14               | 8.2 J    | 0.63                    | 0.33-3.00 | Agree      |
|           | OCDF                | pg/g  | 0.784 J            | <11      | -                       | -         | Agree      |
| OC-P      | Endosulfan I        | µg/kg | 0.531 J            | <11      | -                       | -         | Agree      |
| VOC       | 2-Butanone          | µg/kg | 1.96 J             | <8.61    | -                       | -         | Agree      |
|           | Acetone             | µg/kg | 8.75 J             | 15.071 J | 0.58                    | 0.33-3.00 | Agree      |
|           | Methylene chloride  | µg/kg | 1.07 J             | <17.2    | -                       | -         | Agree      |
|           | Toluene             | µg/kg | <4.39              | 3.337 J  | -                       | -         | Agree      |
| Metal     | Arsenic             | mg/kg | 0.937 J            | <43      | -                       | -         | Agree      |
|           | Barium              | mg/kg | 76.3               | 90       | 0.85                    | 0.50-2.00 | Agree      |
|           | Cadmium             | mg/kg | <0.499             | 1.3 J    | 0.38                    | 0.33-3.00 | Agree      |
|           | Chromium            | mg/kg | 2.28               | 2.3 J    | 0.99                    | 0.33-3.00 | Agree      |
|           | Lead                | mg/kg | 13.4               | 17       | 0.79                    | 0.50-2.00 | Agree      |
|           | Mercury             | mg/kg | <0.0204            | 0.0039 J | -                       | -         | Agree      |

Table 11. Comparison of Duplicate Sample Results between Primary and QA Laboratories

| 0         |                    | Unit  | Result: E | Result: E11-123-S3 |       | Compare: Primary vs. QA |            |  |
|-----------|--------------------|-------|-----------|--------------------|-------|-------------------------|------------|--|
| Parameter | Analyte            |       | Primary   | QA                 | Ratio | Criteria                | Evaluation |  |
| Dioxin    | 2,3,7,8-TCDD       | pg/g  | 0.11 J    | <1.1               | -     | -                       | Agree      |  |
|           | 2,3,7,8-TCDF       | pg/g  | 0.381 J   | 0.37 J             | 1.03  | 0.33-3.00               | Agree      |  |
|           | OCDD               | pg/g  | 3.14 J    | <11                | -     | -                       | Agree      |  |
| VOC       | Acetone            | µg/kg | 10 J      | 15.248 J           | 0.66  | 0.33-3.00               | Agree      |  |
|           | Methylene chloride | µg/kg | 1.22 J    | <19.6              | ~     | **                      | Agree      |  |
| Metal     | Arsenic            | mg/kg | 4.12      | <42                | -     | -                       | Agree      |  |
|           | Barium             | mg/kg | 107       | 110                | 0.97  | 0.50-2.00               | Agree      |  |
|           | Cadmium            | mg/kg | 0.389 J   | 1.4 J              | 0.28  | 0.33-3.00               | Disagree   |  |
|           | Chromium           | mg/kg | 1.83      | 1.7 J              | 1.08  | 0.33-3.00               | Agree      |  |
|           | Lead               | mg/kg | 7.72      | 9.3 J              | 0.83  | 0.33-3.00               | Agree      |  |
|           | Mercury            | mg/kg | <0.0203   | 0.0036 J           | -     | -                       | Agree      |  |
|           | Silver             | mg/kg | 0.443 J   | <2.1               | -     | -                       | Agree      |  |

3303.

| Table 11. | Continued |
|-----------|-----------|
|-----------|-----------|

| Parameter | Analyte            | Unit  | Result: E11-136-S2 |        | Compare: Primary vs. QA |           |            |
|-----------|--------------------|-------|--------------------|--------|-------------------------|-----------|------------|
| Parameter | Andiyle            | Unic  | Primary            | QA     | Ratio                   | Criteria  | Evaluation |
| Dioxin    | 2,3,4,7,8-PeCDF    | pg/g  | 0.0641             | <5.3   | -                       | -         | Agree      |
|           | 2,3,7,8-TCDF       | pg/g  | 0.2                | 0.4    | 0.50                    | 0.33-3.00 | Agree      |
|           | OCDD               | pg/g  | 2.4                | 6.3    | 0.38                    | 0.33-3.00 | Agree      |
| VOC       | Acetone            | µg/kg | <45.1              | 10.684 | -                       | -         | Agree      |
|           | Methylene chloride | µg/kg | 1.1                | <18.5  | -                       | -         | Agree      |
| Metal     | Arsenic            | mg/kg | 2.24               | <42    | -                       | -         | Agree      |
|           | Barium             | mg/kg | 98.5               | 83     | 1.19                    | 0.50-2.00 | Agree      |
|           | Cadmium            | mg/kg | 0.453              | 1.4    | 0.32                    | 0.50-2.00 | Disagree   |
|           | Chromium           | mg/kg | 3.76               | 4.1    | 0.92                    | 0.50-2.00 | Agree      |
|           | Lead               | mg/kg | 7.1                | 8.5    | 0.84                    | 0.50-2.00 | Agree      |
|           | Mercury            | mg/kg | <0.0179            | 0.004  | -                       | •         | Agree      |

3304

•

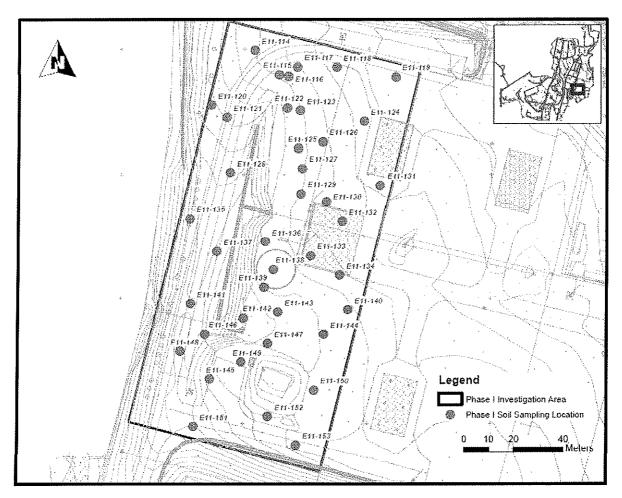



Figure 1. Phase I (Helipad) Site Borehole Locations

1840 ···

# APPENDIX VII. REPORT FOR PHASE 2/2B SOIL SAMPLE TEST RESULT

3306



DEPARTMENT OF THE ARMY U.S. ARMY CORPS OF ENGINEERS, FAR EAST DISTRICT Unit #15546 APO AP 96205-5546

CEPOF-ED-G

SEP 1 9 2011.

MEMORANDUM FOR USFK Assistant Chief of Staff, Engineers, ATTN: Colonel Joseph F. Birchmeier, UNIT #15237, APO AP 96205-5237

SUBJECT: Final Test Results of Phase II and IIb Soil Samples, Cp Carroll, Korea (G&E 11-032E/E2011-62)

1. Enclosed are final test results for soil samples collected at Phase II and IIb Sites, Cp Carroll. Soil sampling was conducted from 5 Aug to 13 Aug 2011 and a total of 154 samples were collected from 43 boreholes by the Geotechnical and Environmental Engineering Branch, US Army Corps of Engineers, Far East District (FED). The locations of boreholes are shown in Figure 1 and sample information, with sampling depth, is provided in Table 1.

2. The samples were tested by SGS North America located in Wilmington, NC, according to US EPA SW-846 Methods. The analytical parameters tested were dioxins and furans, chlorinated herbicides, organochlorine (OC) pesticides, organophosphorus (OP) pesticides, volatile organic compounds (VOC), semivolatile organic compounds (SVOC), and RCRA (Resource Conservation and Recovery Act) metals. Seven (7) samples were tested by the US Army Public Health Command as duplicate analyses for quality assurance purposes. A total of 204 analytes were tested for each soil sample. Table 2 provides test method information for each analytical parameter.

# 3. Laboratory Findings

Summaries of test results for each analytical parameter are provided in Tables 3 through 9. The highlighted numbers indicate detections of contaminants. The summary tables presented in this memorandum indicate those parameters which were detected above the reporting limit or, at least, estimated to be above its detection limit. *The full laboratory reports are provided on compact disk (CD)*.

a. Dioxin and Furan: Of particular interest for the dioxins and furans is the dioxin commonly associated with Agent Orange - 2,3,7,8-TCDD. Three samples have concentrations of 2,3,7,8-TCDD at levels greater than reporting limits. The locations, concentrations, and sample depths (meters below ground surface) were as follows:

| • E11-171-S3 | 7.44 pg/g  | 2.0 to 6.5 m |
|--------------|------------|--------------|
| • E11-181-S1 | 0.57 pg/g  | 0.0 to 0.5 m |
| • E11-184-S1 | 0.502 pg/g | 0.0 to 0.5 m |

The result for E11-184-S1 was EMPC-flagged (estimated maximum possible concentration). This means the result was calculated from a signal which did not meet the mass spectrum quality criteria, but was estimated as the maximum possible concentration under the assumption the signal is only originated from the analyte.

An additional 26 samples had detected concentrations of 2,3,7,8-TCDD that were reported at concentration levels between the detection limit and reporting limits. The concentrations ranged between  $0.0683 \sim 0.317$  pg/g. These values were flagged "J EMPC" during data validation.

Other dioxin and furan compounds were frequently detected in the collected samples. The most frequently detected dioxins and furans were OCDD (151 of 154 samples); 1,2,3,4,6,7,8-HpCDD (128 of 154 samples); 1,2,3,4,6,7,8-HpCDF (75 of 154 samples); and OCDF (61 of 154 samples). The maximum concentrations, locations, and sample depths (meters below ground surface) of these dioxins and furans were:

| • OCDD                | 1,960 pg/g | E11-195-S3 | 2.0 to 5.0 m |
|-----------------------|------------|------------|--------------|
| • 1,2,3,4,6,7,8-HpCDD | 76.9 pg/g  | E11-170-S2 | 0.5 to 2.0 m |
| • 1,2,3,4,6,7,8-HpCDF | 19.7 pg/g  | E11-178-S1 | 0.0 to 0.5 m |
| • OCDF                | 41.1 pg/g  | E11-173-S1 | 0.0 to 0.5 m |

Calculated toxic equivalent (TEQ) values for detected dioxins and furans (EMPC included) ranged from 0.00 to 10.09 pg/g based on 2005 World Health Organization (WHO) evaluation. The maximum TEQ was calculated for sample E11-171-S3 (2.0 to 6.5 m bgs).

**b.** Chlorinated Herbicide: No chlorinated herbicides were detected in any of the collected samples. Agent Orange-related chemicals in chlorinated herbicides are 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T). The reporting limits of Agent Orange constituents ranged from 0.0152 to 0.0193 mg/kg for both of 2,4-D and 2,4,5-T.

c. OC-Pesticide: Several OC-Pescticides were detected in the collected samples. The OC-Pesticides most frequently detected were 4,4'-DDD (107 out of 154 samples), 4,4'-DDE (103 out of 154 samples), 4,4'-DDT (117 out of 154 samples), gamma-BHC (Lindane) (45 out of 154 samples), dieldrin (30 out of 154 samples), beta-BHC (29 out of 154 samples), alpha-chlordane (28 out of 154 samples), and gamma-chlordane (27 out of 154 samples). The maximum concentration and location for each of these OC-Pesticides are as follows:

| • 4,4'-DDD                              | 13,500 µg/kg | E11-179-S1 | 0.0 to 0.5 m |
|-----------------------------------------|--------------|------------|--------------|
| • 4,4'-DDE                              | 2,830 µg/kg  | E11-170-S1 | 0.0 to 0.5 m |
| • 4,4'-DDT                              | 70,200 µg/kg | E11-179-S1 | 0.0 to 0.5 m |
| <ul> <li>gamma-BHC (Lindane)</li> </ul> | 13,900 µg/kg | E11-174-S1 | 0.3 to 0.8 m |
| <ul> <li>dieldrin</li> </ul>            | 336 µg/kg    | E11-178-S1 | 0.0 to 0.5 m |
| <ul> <li>beta-BHC</li> </ul>            | 112 µg/kg    | E11-174-S1 | 0.3 to 0.8 m |

| ٠ | alpha-chlordane | 78.7 μg/kg | E11-171-S2 | 0.5 to 2.0 m |
|---|-----------------|------------|------------|--------------|
| ٠ | gamma-chlordane | 93 µg/kg   | E11-171-S2 | 0.5 to 2.0 m |

d. OP-Pesticide: No OP-pesticides were detected in any of the collected samples.

**e. VOC**: A number of VOCs were detected in the collected samples. The VOCs that were detected most frequently are acetone (76 of 154 samples), tetrachloroethene (63 of 154 samples), 2-butanone (57 of 154 samples), methyl iodide (33 of 154 samples), toluene (32 of 154 samples), methylene chloride (31 of 154 samples), trichloroethene (31 of 154 samples), and cis-1,2-dichloroethene (31 of 154 samples). The maximum concentration and location for each of these VOCs are as follows:

| Acetone                                    | 108 µg/kg    | E11-193-S1 | 0.0 to 0.5 m  |
|--------------------------------------------|--------------|------------|---------------|
| <ul> <li>tetrachloroethene</li> </ul>      | 32,300 µg/kg | E11-179-S1 | 0.0 to 0.5 m  |
| 2-butanone                                 | 28 µg/kg     | E11-180-S1 | 0.0 to 0.5 m  |
| <ul> <li>methyl iodide</li> </ul>          | 7.92 µg/kg   | E11-180-S1 | 0.0 to 0.5 m  |
| • toluene                                  | 21,300 µg/kg | E11-180-S4 | 5.0 to 10.0 m |
| <ul> <li>methylene chloride</li> </ul>     | 38.2 µg/kg   | E11-164-S4 | 5.0 to 11.0 m |
| <ul> <li>trichloroethene</li> </ul>        | 587 µg/kg    | E11-176-S4 | 5.0 to 10.0 m |
| <ul> <li>cis-1,2-dichloroethene</li> </ul> | 558 µg/kg    | E11-170-S3 | 2.0 to 5.0 m  |

**f. SVOC**: The most common SVOC analyte detected in Phase II and IIb samples was bis(2ethylhexyl)phthalate. It was detected in 35 of the 154 samples, but 33 of those detected values are estimated and J-flagged because they were less than the reporting limit. Forty-four (44) other SVOCs were detected in the soil samples. Theses detections were often in only one or two samples at levels less than the reporting limit. Indeed, one sample (E11-160 at a depth of 2 to 3.4 meters below ground surface) accounts for 44 of the detected SVOCs found in the soil samples collected during Phase II and IIb.

g. Metals: Arsenic, barium, chromium, and lead were detected in all 154 samples. Mercury, selenium, and cadmium were also detected in a significant number of samples collected during Phase II and IIb. Silver was only detected in four of the 154 collected samples. The maximum concentration and location for each of the most frequently detected metals are as follows:

| <ul> <li>Arsenic</li> </ul> | 308 mg/kg  | E11-155-S1 | 0.0 to 0.5 m |
|-----------------------------|------------|------------|--------------|
| <ul> <li>Barium</li> </ul>  | 143 mg/kg  | E11-191-S3 | 2.0 to 5.0 m |
| Chromium                    | 19.6 mg/kg | E11-173-S2 | 0.5 to 2.0 m |
| • Lead                      | 34.7 mg/kg | E11-190-S3 | 2.0 to 5.0 m |

4. Quality Control and Quality Assurance

# a. Data Validation

3309

Chemical data validation was conducted by Laboratory Data Consultants, Inc. located in Carlsbad, CA. The data was evaluated in accordance with US Department of Defense Quality System Manual (DoD QSM) for Environmental Laboratories, National Functional Guidelines for Chlorinated Dibenzo-p-Dioxins and Chlorinated Dibenzofurans Data Review (OSWER 9240.1-51), National Functional Guidelines for Superfund Organic Methods Data Review (OSWER 9240.1-48), and National Functional Guidelines for Inorganic Superfund Data Review (OSWER 9240.1-51). *Full data validation reports are included on compact disk (CD).* 

(1) Sample Preservation: All samples must be refrigerated at  $4 \pm 2^{\circ}$ C. The chain-ofcustodies were reviewed for temperature upon time of receipt. In one sample delivery group (SDG 31102153) out of a total of six, the temperature blanks were reported at 11 °C, 9 °C, 8.1 °C upon receipt by the laboratory but cooler temperatures in this SDG were reported at 2 °C, 3 °C, 4.4 °C upon receipt by the laboratory. The temperature discrepancies in temperature blanks should not affect the results of analyses.

(2) Holding Times: The maximum allowable holding time between sample collection and sample preparation or sample preparation and sample analysis depends on the analyte. All soil samples met holding time criteria; the 14 day analysis holding time for VOC, the 28 day analysis holding time for mercury, the 180 day analysis holding time for all other metals, the 30 day extraction and 45 day analysis holding time for dioxins/furans, the 14-day extraction and 40 day analysis holding time for SVOC, pesticides, and herbicides. There was no holding time discrepancy.

(3) Quality Control Samples: The validation report evaluated the performance of QC samples such as blanks, laboratory control samples, matrix spike/matrix spike duplicates, and surrogate spikes. Method blanks were performed at the required frequencies. VOCs, OC-pesticides, metals, and dioxin/furans were detected in several method blanks. Method blank contamination resulted in flagging of field sample results as "not detected" depending on level of detection in these sample groups. Thirteen (13) trip blanks were collected and analyzed for VOC to identify possible contamination originating from storage, shipping, site conditions, and laboratory handling. Several VOCs were detected in the trip blanks at low levels. As a result of trip blank contamination, field samples were qualified as "not detected" depending on level of detection in corresponding sample groups.

Surrogates were added to all samples and blanks as required. The laboratory control samples, and matrix spike/matrix spike duplicates were performed at the required frequencies. All recoveries of surrogates, laboratory control samples, and matrix spike/matrix spike duplicates were within acceptance limits with a few exceptions. Relative percent recoveries between matrix spike and matrix spike duplicates were within acceptance limits with several exceptions. At the base of quality control issues of exceeding acceptance limits, the validation report includes identification of reported results which need to be qualified (flagged) and the reasons for the flags. During data validation, a total of fifteen data were qualified as rejected due to severely

3310

low recoveries in matrix spike/matrix spike duplicates. The rejected data were identified with the flag "R"; 3 results in chlorinated herbicides, 3 results in OC-pesticides, 7 results in OP-pesticides, and 2 results in VOCs.

(4) Summary: Laboratory data packages were evaluated for preservation, holding times, blanks, surrogate spikes, laboratory control samples, and matrix spike/matrix spike duplicates. The evaluation for these parameters is considered to be a "Level 2a" Data Validation. The difference between Level 2a and 2b is that 2a validation does not review calibrations, while 2b does. The overall data validation showed that the data is generally of acceptable quality with some results for specific analytes being rejected or qualified as estimated/not detected.

# b. Duplicate Sample Results

Field samples were collected as duplicates and used for performance evaluation and QA purposes. Duplicate sample results were evaluated based on EM 200-1-6 titled Chemical Quality Assurance for Hazardous, Toxic and Radioactive Waste Projects. The document identifies the criteria for comparing field QC and QA sample data. Based on those criteria, the concentration ratio between primary and duplicate samples should be within designated limits to be evaluated as "agreement" with each other. The acceptance criteria are as follows:

 $0.33 \le \text{Ratio} \le 3.00$  when one result is less than reporting limit  $0.50 \le \text{Ratio} \le 2.00$  for metal  $0.20 \le \text{Ratio} \le 5.00$  for VOC  $0.25 \le \text{Ratio} \le 4.00$  for Dioxin, Herbicide, Pesticide, and SVOC

(1) Duplicate Samples in Primary Laboratory: Seventeen (17) sets of duplicate samples were provided to the primary laboratory for blind duplicate analyses (primary and primary dup). Table 10 shows the results of samples to be compared and outcome of evaluation determining whether the ratio is within "agreement" criteria or not. The table lists the analytes having at least one quantified (detected) result. Other analytes which are not included in the table had results "not detected" at both of the primary and primary dup samples, and they are considered as in "agreement" each other. Out of 17 sets of samples and 3468 analytes (204 analytes/sample), 14 analytes showed "disagreement" between duplicate samples analyzed in the primary laboratory.

(2) Duplicate Samples between Primary and QA laboratories: Seven (7) sets of duplicate samples were analyzed and compared between primary and QA laboratories. Comparison of the results and performance evaluation are provided in Table 11. The analytes that were not detected in both samples were omitted in this table. Out of 7 sets of samples and 1428 analytes, 7 analytes showed "disagreement" as a result of the comparison of data between two different laboratories.

(3) The possible reason for the duplicate disagreement is considered to be due to nonhomogeneity of the soil samples. Soil samples are homogenized when they are collected in two

3311

different containers at the site and also the laboratories homogenize soil samples prior to analyses. But there can be "hot spots" in a container that go into the sample aliquot and cause disparity between the results. Reported results having values between the detection limits and reporting limits (J-flagged) are estimated amount and will have a much higher degree of variability and uncertainty in measurement. Many of the disagreements involved data with Jflags: disagreement on 10 of 14 duplicate samples between primary and primary dup, disagreement on 3 of 7 in duplicate samples between primary and QA laboratories. The overall data comparison showed pretty good performance and assured the quality of analyses.

5. The POC for this matter is Ms. 56 ble



Encl

Chief, Geotechnical and Environmental Engineering Branch

3312

# Tables and Figures

- Final Test Results of Phase II & IIb Soil Samples, Cp Carroll -

- Table 1.
   Soil Sample Information for Phase II and IIb
- Table 2. Soil Test Methods Used in Phase II and IIb
- Table 3. Summary of Dioxin/Furan Results for Phase II & IIb Soil Samples
- Table 4. Summary of Chlorinated Herbicide Results for Phase II & IIb Soil Samples
- Table 5.
   Summary of Organochlorine Pesticide Results for Phase II & IIb Soil Samples
- Table 6. Summary of Organophosphorus Pesticide Results for Phase II & IIb Soil Samples
- Table 7. Summary of Volatile Organic Compound Results for Phase II & IIb Soil Samples
- Table 8.
   Summary of Semivolatile Organic Compound Results for Phase II & IIb Soil
   Samples
- Table 9.
   Summary of Metal Results for Phase II & IIb Soil Samples
- Table 10. Comparison of Duplicate Sample Results in Primary Laboratory
- Table 11. Comparison of Duplicate Sample Results between Primary and QA Laboratories

Figure 1. Borehole Locations at Phase II and IIb Sites

| Borehole | Sample   | Depth (m) | Borehole | Sample   | Depth (m) | Borehole | Sample     | Depth (m) | Borehole | Sample   | Depth (m) | Borehole | Sample     | Depth (m) |
|----------|----------|-----------|----------|----------|-----------|----------|------------|-----------|----------|----------|-----------|----------|------------|-----------|
| E11-154  | ID<br>S1 | 0.0-0.5   | E11-164  | S1       | 0.0-0.5   | E11-173  | ID<br>S4   | 5.0-10.0  | E11-181  | S3       | 2.0-5.0   | E11-189  | S3         | 2.0-5.0   |
| E11-154  | S2       | 0.5-2.3   | E11-164  | S2       | 0.5-2.0   | E11-174  | S1         | 0.3-0.8   | E11-182  | S1       | 0.0-0.5   | E11-189  | S4         | 5.0-10.0  |
| E11-155  | 51       | 0.0-0.5   | E11-164  | S3       | 2.0~5.0   | E11-174  | S2         | 0.8-2.3   | E11-182  | S2       | 0.5-2.0   | E11-190  | S1         | 0.0-0.5   |
| E11-155  | S2       | 0.5-1.8   | E11-164  | 55<br>S4 | 5.0-11.0  | E11-174  | 53<br>S3   | 2.3-5.3   | E11-182  | S3       | 2.0-5.0   | E11-190  | S2         | 0.5-2.0   |
| E11-156  | 51       | 0.0-0.5   | E11-165  | S1       | 0.0-0.5   | E11-174  | <br>S4     | 5.3-8.9   | E11-182  | <br>S4   | 5.0-10.0  | E11-190  | S3         | 2.0-5.0   |
| E11-156  | S2       | 0.5-2.0   | E11-165  | S2       | 0.5-2.0   | E11-175  | S1         | 0.0-0.5   | E11-183  | S1       | 0.0-0.5   | E11-190  |            | 5.0-10.0  |
| E11-156  | 52<br>S3 | 2.0-6.45  | E11-165  | 52<br>S3 | 2.0-5.0   | E11-175  | S2         | 0.5-2.0   | E11-183  | S2       | 0.5-2.0   | E11-191  | S1         | 0.0-0.5   |
| E11-157  | 53<br>S1 | 0.0-0.5   | E11-165  | 53<br>S4 | 5.0-10.0  | E11-175  | 52<br>S3   | 2.0-5.0   | E11-183  | S3       | 2.0-5.0   | E11-191  | S2         | 0.5~2.0   |
| E11-157  | S2       | 0.5-2.0   | E11-166  | S1       | 0.3-0.8   | E11-175  | 54         | 5.0-7.25  | E11-183  | 50<br>S4 | 5.0-10.0  | E11-191  | <br>S3     | 2.0-5.0   |
| E11-157  | 52<br>S3 | 2.0-4.5   | E11-166  | S2       | 0.8-2.7   | E11-176  | S1         | 0.0-0.5   | E11-184  | S1       | 0.0-0.5   | E11-191  | 54<br>S4   | 5.0-7.7   |
| E11-158  | S1       | 0.0-0.5   | E11-167  | 51       | 0.0-0.5   | E11-176  | S2         | 0.5-2.0   | E11-184  | S2       | 0.5-2.0   | E11-192  | S1         | 0.0-0.5   |
| E11-158  | 52<br>S2 | 0.5-2.0   | E11-167  | S2       | 0.5-2.0   | E11-176  | 52<br>S3   | 2.0-5.0   | E11-184  | 52<br>S3 | 2.0-5.0   | E11-192  | S2         | 0.5-2.0   |
| E11-158  | 52<br>S3 | 2.0-5.0   | E11-167  | 52<br>S3 | 2.0-5.5   | E11-176  | S4         | 5.0-10.0  | E11-184  | 54<br>S4 | 5.0-8.75  | E11-192  | S3         | 2.0-5.0   |
| E11-158  | 54       | 5.0-8.5   | E11-168  | 50<br>S1 | 0.0-0.5   | E11-177  | S1         | 0.4-0.9   | E11-185  | S1       | 0.0-0.5   | E11-192  | S4         | 5.0-10.0  |
| E11-159  | S1       | 0.0-0.5   | E11-168  | S2       | 0.5-3.0   | E11-177  | S2         | 0.9-2.4   | E11-185  | S2       | 0.5-2.0   | E11-193  | S1         | 0.0-0.5   |
| E11-159  | S2       | 0.5-2.0   | E11-169  | S1       | 0.0-0.5   | E11-177  | S3         | 2.4-5.4   | E11-185  | S3       | 2.0-5.0   | E11-193  | S2         | 0.5-2.0   |
| E11-159  | S3       | 2.0-5.0   | E11-169  | S2       | 0.5-1.8   | E11-177  | S4         | 5.4-9.0   | E11-185  | S4       | 5.0-8.8   | E11-193  | S3         | 2.0-5.0   |
| E11-159  | S4       | 5.0-10.0  | E11-170  | S1       | 0.0-0.5   | E11-178  | S1         | 0.0-0.5   | E11~186  | S1       | 0.0-0.5   | E11-193  | S4         | 5.0-8.6   |
| E11-160  | S1       | 0.0-0.5   | E11-170  | S2       | 0.5-2.0   | E11-178  | S2         | 0.5-2.0   | E11-186  | S2       | 0.5-2.0   | E11~194  | S1         | 0.3-0.8   |
| E11-160  | S2       | 0.5-2.0   | F11-170  | S3       | 20-50     | F11-178  | 53         | 20-50     | E11-186  | S3       | 2,0-5.0   | E11-194  | S2         | 0.8-2.0   |
| E11-160  | S3       | 2.0-3.4   | E11-170  | S4       | 5.0-7.5   | E11-178  | S4         | 5.0-10.0  | E11-186  | S4       | 5.0-8.0   | E11-194  | S3         | 2.0-5.0   |
| E11-161  | S1       | 0.0-0.5   | E11-171  | S1       | 0.0-0.5   | E11-179  | S1         | 0.0-0.5   | E11-187  | S1       | 0.0-0.5   | E11-194  | S4         | 5.0-10.0  |
| E11-161  | S2       | 0.5-2.0   | E11-171  | S2       | 0.5-2.0   | E11-179  | <b>S</b> 2 | 0.5-2.0   | E11~187  | S2       | 0.5-2.0   | E11-195  | S1         | 0.3-0.8   |
| E11-161  | S3       | 2.0-5.0   | E11-171  | S3       | 2.0-6.5   | E11-179  | S3         | 2.0-5.0   | E11-187  | S3       | 2.0-5.0   | E11-195  | S2         | 0.8-2.0   |
| E11-161  | S4       | 5.0-7.9   | E11-172  | S1       | 0.0-0.5   | E11-179  | S4         | 5.0-10.0  | E11-187  | S4       | 5.0-10.0  | E11-195  | S3         | 2.0-5.0   |
| E11-162  | S1       | 0.0-0.5   | E11-172  | S2       | 0.5-2.0   | E11-180  | S1         | 0.0-0.5   | E11-188  | S1       | 0.0-0.5   | E11-195  | S4         | 5.0-10.0  |
| E11 162  | S2       | 0.5-1.52  | E11-172  | S3       | 2.0-5.0   | E11-180  | S2         | 0.5-2.0   | E11-188  | S2       | 0.5-2.0   | E11-196  | <u>ន</u> 1 | በ 3-በ 8   |
| E11-163  | S1       | 0.0-0.5   | E11-172  | S4       | 5.0-8.7   | E11-180  | <b>S</b> 3 | 2.0-5.0   | E11-188  | S3       | 2.0-5.0   | E11-196  | <b>S</b> 2 | 0.8-2.3   |
| E11-163  | S2       | 0.5-2.0   | E11-173  | S1       | 0.0-0.5   | E11-180  | S4         | 5.0-10.0  | E11-188  | S4       | 5.0-9.6   | E11-196  | S3         | 2.3-5.3   |
| E11-163  | S3       | 2.0-5.0   | E11-173  | S2       | 0.5-2.0   | E11-181  | S1         | 0.0-0.5   | E11-189  | S1       | 0.0-0.5   | E11-196  | S4         | 5.3-10.3  |
| E11-163  | S4       | 5.0-10.0  | E11-173  | S3       | 2.0~5.0   | E11-181  | S2         | 0.5-2.0   | E11-189  | S2       | 0.5-2.0   |          |            |           |

.

Table 1. Soil Sample Information for Phase II and IIb

3314

#### Table 2. Soil Test Methods Used in Phase II and Ilb

| Parameter           | Number of<br>Analytes | Method:<br>Preparation<br>Analysis | Description                                                                         |
|---------------------|-----------------------|------------------------------------|-------------------------------------------------------------------------------------|
|                     |                       | 3540C                              | Soxhlet Extraction                                                                  |
| Dioxins and furans  | 17                    | 8290A                              | High-resolution Gas Chromatography/High Resolution Mass Spectrometry<br>(HRGC/HRMS) |
| Chlorinated         | 5                     | 3541                               | Automated Soxhlet Extraction                                                        |
| herbicides          | 5                     | 8151A                              | GC-MS Using Methylation Derivatization                                              |
| OC posticidos       | 21                    | 3550C                              | Ultrasonic Extraction                                                               |
| OC pesticides       | 21                    | 8270D                              | GC/MS                                                                               |
| OD apatinidan       | 27                    | 3546                               | Microwave Extraction                                                                |
| OP pesticides       | 21                    | 8141B                              | GC-Flame Photometric Detector                                                       |
| 100                 | 67                    | 5035                               | Closed System Purge and Trap                                                        |
| VOCs                | 67                    | 8260B                              | GC/MS                                                                               |
| 0.000-              | 59                    | 3541                               | Automated Soxhlet Extraction                                                        |
| SVOCs               | 59                    | 8270D                              | GC/MS                                                                               |
| 1                   |                       | 3050B                              | Acid Digestion                                                                      |
| RCRA Metals (total) | 8                     | 6010C                              | Inductively Coupled Plasma-Atomic Emission Spectrometry                             |
|                     |                       | 7471B mercury                      | Cold Vapor Technique                                                                |

3315

|    | Boreh                     | ole → | E11-154      | E11-154 | E11-155      | E11-155      | E11-156 | E11-156      | E11-156      | E11-157 | E11-157    | E11-157      |
|----|---------------------------|-------|--------------|---------|--------------|--------------|---------|--------------|--------------|---------|------------|--------------|
| No | Sample                    | ID →  | S1           | \$2     | S1           | <b>S</b> 2   | S1      | S2           | S3           | S1      | S2         | S3           |
|    | Analyte↓ Depth            | , m → | 0.0~0.5      | ~2.3    | 0.0~0.5      | ~1.8         | 0.0~0.5 | ~2.0         | ~6.45        | 0.0~0.5 | ~2.0       | ~4.5         |
| 1  | 2,3,7,8-TCDD pg/          | 'g    | ND           | NÐ      | ND           | ND           | ND      | 0.085 J EMPC | ND           | ND      | ND         | ND           |
| 2  | 1,2,3,7,8-PeCDD pg/       | g     | 0.154 J      | ND      | ND           | 0.109 J EMPC | ND      | NÐ           | ND           | ND      | ND         | ND           |
| 3  | 1,2,3,4,7,8-HxCDD pg/     | g     | 0.247 J      | ND      | ND           | 0.087 J      | NÐ      | ND           | 0.175 J EMPC | ND      | ND         | ND           |
| 4  | 1,2,3,6,7,8-HxCDD pg/     | g     | 0.175 J EMPC | ND      | ND           | 0.12 J EMPC  | ND      | ND           | ND           | ND      | NÐ         | ND           |
| 5  | 1,2,3,7,8,9-HxCDD pg/     | 'g    | 0.354 J      | ND      | ND           | 0.144 J EMPC | ND      | 0.222 J      | 0.43 J       | ND      | NÐ         | ND           |
| 6  | 1,2,3,4,6,7,8-HpCDD pg/   | g     | 1.04 JEMPC   | 0,429 J | 0.877 J      | 0,945 J EMPC | 0.529 J | 3.27         | 12.8         | D.791 J | 1.21 JEMPC | 0.3 J EMP(   |
| 7  | OCDD pg/                  | g     | 24,2         | 16.3    | 14,2         | 36.4         | 19.3    | 32.8         | 523          | 48.7    | 39,7       | 13.4         |
| 8  | 2,3,7,8-TCDF pg/          | g     | ND           | ND      | ND           | ND           | ٨D      | ND           | NÐ           | ND      | ND         | ND           |
| 9  | 1,2,3,7,8-PeCDF pg/       | g     | 0.226 J      | ND      | 0.157 J      | 0,141 J      | NÐ      | 0.277 J EMPC | ND           | ND      | ND         | 0.042 J EMPC |
| 10 | 2,3,4,7,8-PeCDF pg/       | g     | 0.201 J EMPC | ND      | 0.233 J      | 0,148 J EMPC | ND      | 0,918 J EMPC | ND           | ND      | ND         | ND           |
| 11 | 1,2,3,4,7,8-HxCDF pg/     | g     | 0.189 /      | NÐ      | ND           | 0.093 J EMPC | ND      | 0.497 J EMPC | ND           | ND      | ND         | ND           |
| 12 | 1,2,3,6,7,8-HxCDF pg/     | g     | 0,189 J EMPC | ND      | 0.118 J EMPC | 0,135 J      | ND      | 0.472 J      | ND           | ND      | ND         | ND           |
| 13 | 1,2,3,7,8,9-HxCDF pg/     | g     | 0.329 J EMPC | ND      | 0.147 J      | 0.116 J EMPC | ND      | ND           | ND           | ND      | ND         | ND           |
| 14 | 2,3,4,6,7,8-HxCDF pg/     | g     | 0.195 J EMPC | ND      | 0.147 J EMPC | 0.118 J EMPC | ND      | 0.32 J       | ND           | NÐ      | ND         | ND           |
| 15 | 1,2,3,4,6,7,8-HpCDF pg/   | g     | ND           | 0.096 J | ND           | 0.239 J      | ND      | 2,25 J       | ND           | ND      | NÐ         | ND           |
| 16 | 1,2,3,4,7,8,9-HpCDF pg/   | g     | ND           | NĎ      | ND           | ND           | NÐ      | 0.385 J EMPC | NÐ           | ND      | ND         | NÐ           |
| 17 | OCDF pg/                  | g     | ND           | NÐ      | 0.682 J      | 0.845 J      | ND      | 1.72 J       | ND           | ND      | ND         | ND           |
|    | WHO-2005 TEQ (ND=0), pg/g | Ì     | 0.4065       | 0.0101  | 0.1290       | 0.2619       | 0.0111  | 0.4087       | 0.3454       | 0.0225  | 0.0240     | 0.0083       |

# NOTES:

3: Estimated amount detected between detection limit and reporting limit

EMPC: Estimated maximum possible concentration due to ion raio failure

ND: Not detected

33/6

|    | Boreho                    | ie → E11-158 | E11-158     | E11-158      | E11-158 | E11-159      | E11-159      | E11-159      | E11-159      | E11-160      | E11-160      |
|----|---------------------------|--------------|-------------|--------------|---------|--------------|--------------|--------------|--------------|--------------|--------------|
| No | Sample                    | ID → S1      | 52          | S3           | S4      | S1           | <b>S2</b>    | S3           | S4           | S1           | S2           |
|    | Analyte↓ Depth,           | m → 0.0~0.5  | ~2.0        | ~5.0         | ~8.5    | 0.0~0.5      | ~2.0         | ~5.0         | ~10.0        | 0.0~0.5      | ~2.0         |
| 1  | 2,3,7,8-TCDD pg/          | S ND         | ND          | ND           | ND      | ND           | ND           | 0.168 J EMPC | ND           | NÐ           | NÐ           |
| 2  | 1,2,3,7,8-PeCDD pg/       | g ND         | NÐ          | ND           | ND      | ND           | ND           | ND           | ND           | ND           | ND           |
| 3  | 1,2,3,4,7,8-HxCDD pg/     | g ND         | ND          | ND           | ND      | NÐ           | ND           | ND           | ND           | ND           | ND           |
| 4  | 1,2,3,6,7,8-HxCDD pg/     | g ND         | ND          | 0.141 J      | ND      | ND           | ND           | ND           | ND           | ND           | ND           |
| 5  | 1,2,3,7,8,9-HxCDD pg/     | g ND         | ND          | 0.264 J      | ND      | ND           | ND           | 0.132 3 EMPC | 0.171 J EMPC | ND           | ND           |
| 6  | 1,2,3,4,6,7,8-HpCDD pg/   | ; 0.88 J     | 2.06 J      | 4.26         | 2,02 J  | 0.568 J      | 0.524 J      | 1.65 1       | 15.6         | 0.635 J      | 0.373 J EMPO |
| 7  | OCDD pg/i                 | r 19.1       | 37          | 118          | 49.2    | 11.7         | 15,4         | 42:3         | 616          | 20.2         | 13.7         |
| 8  | 2,3,7,8-TCDF pg/i         | ND           | NÐ          | NĎ           | ND      | ND           | ND           | ND           | ND           | 0.23 J       | ND           |
| 9  | 1,2,3,7,8-PeCDF pg/i      | s ND         | 0.107 J     | 0.068 J      | ND      | ND           | 0.056 J.EMPC | ND           | ND           | 0.082 J EMPC | ND           |
| 10 | 2,3,4,7,8-PeCDF pg/f      | 0.126 J EMPO | 0.131 J     | 0.082 J EMPC | NÐ      | ND           | 0.076 J      | 0,082 J      | ND           | 0.088 J EMPC | ND           |
| 11 | 1,2,3,4,7,8-HxCDF pg/     | 0.083 1      | 0.162 J     | 0.08 J       | ND      | ND           | ND           | ND           | ND           | 0.071 J      | ND           |
| 12 | 1,2,3,6,7,8-HxCDF pg/(    | 0.092 J EMPO | 0.182 J 🗟 🔅 | 0.08 J       | ND      | ND           | 0.069 J EMPC | ND           | ND           | 0.071 J      | ND           |
| 13 | 1,2,3,7,8,9-HxCDF pg/(    | ND           | 0.107 J     | ND           | ND      | ND           | NÐ           | ND           | ND           | 0.079 J EMPC | ND           |
| 14 | 2,3,4,6,7,8-HxCDF pg/f    | ND           | 0.093 J     | NĎ           | ND      | ND           | 0.042 J EMPC | NÐ           | ND           | 0.067 J      | ND           |
| 15 | 1,2,3,4,6,7,8-HpCDF pg/f  | 0.235 1      | 0.344 J     | 0.175 J      | ND      | 0.177 J EMPC | 0,151 J      | 0.113 J      | ND           | 0.167 J      | ND           |
| 16 | 1,2,3,4,7,8,9-HpCDF pg/{  | ND           | ND          | ND           | ND      | NÐ           | ND           | NÐ           | ND           | ND           | ND           |
| 17 | OCDF pg/f                 | NÐ           | 0.611 J     | 0.318 J      | ND      | ND           | ND           | ND           | ND           | 0.623 J      | ND           |
|    |                           |              |             |              |         |              |              |              |              |              |              |
|    | WHO-2005 TEQ (ND=0), pg/g | 0.0722       | 0.1322      | 0.1629       | 0.0350  | 0.0110       | 0.0471       | 0.2361       | 0.3579       | 0.0949       | 0.0078       |

# NOTES:

J: Estimated amount detected between detection limit and reporting limit

EMPC: Estimated maximum possible concentration due to ion raio failure

ND: Not detected

3317

.

|     | E                      | Borehole →             | E11-160     | E11-161 | E11-161 | E11-161      | E11-161      | E11-162 | E11-162    | E11-163 | E11-163 | E11-163 |
|-----|------------------------|------------------------|-------------|---------|---------|--------------|--------------|---------|------------|---------|---------|---------|
| No  | Sa                     | ample ID $\rightarrow$ | S3          | S1      | S2      | S3           | S4           | S1      | <b>\$2</b> | S1      | 52      | S3      |
| 948 | Analyte J D            | )epth, m →             | ~3.4        | 0.0~0.5 | ~2.0    | ~5.0         | ~7.9         | 0.0~0.5 | ~1.52      | 0.0~0.5 | ~2.0    | ~5.0    |
| 1   | 2,3,7,8-TCDD           | pg/g                   | ND          | ND      | NÐ      | ND           | 0.135 J EMPC | ND      | ND         | ND      | ND      | ND      |
| 2   | 1,2,3,7,8-PeCDD        | pg/g                   | ND          | ND      | ND      | 0.182 J      | 0.145 J EMPC | NÐ      | ND         | ND      | NĎ      | ND      |
| 3   | 1,2,3,4,7,8-HxCDD      | pg/g                   | ND          | ND      | ND      | 0.078 J EMPC | ND           | NÐ      | ND         | ND      | NÐ      | ND      |
| 4   | 1,2,3,6,7,8-HxCDD      | pg/g                   | ND          | ND      | ND      | 0.157 J EMPC | ND           | ND      | ND         | ND      | ND      | ND      |
| 5   | 1,2,3,7,8,9-HxCDD      | pg/g                   | ND          | ND      | ND      | 0.251 J      | ND           | ND      | ND         | ND      | ND      | ND      |
| 6   | 1,2,3,4,6,7,8-HpCDD    | pg/g                   | 0.38 J EMPC | 0.525 J | 0,76 J  | 1,94 J       | 1.62 J       | 2,3 J   | 2,24 J     | NÐ      | NÐ      | ND      |
| 7   | OCDD                   | pg/g                   | 13.5        | 14.9    | 29      | 63.9         | 52.8         | 81.5    | 89.7       | 18.6    | 20,8    | 16,5    |
| 8   | 2,3,7,8-TCDF           | pg/g                   | ND          | ND      | ND      | ND           | NÐ           | ND      | NÐ         | ND      | ND      | ND      |
| 9   | 1,2,3,7,8-PeCDF        | pg/g                   | NÐ          | ND      | ND      | ND           | ND           | ND      | ND         | ND      | ND      | 0.155 J |
| 10  | 2,3,4,7,8-PeCDF        | pg/g                   | 0.081 J     | ND      | ND      | ND           | NĎ           | ND      | ND         | ND      | ND      | ND      |
| 11  | 1,2,3,4,7,8-HxCDF      | pg/g                   | ND          | ND      | ND      | ND           | ND           | ND      | ND         | ND      | ND      | ND      |
| 12  | 1,2,3,6,7,8-HxCDF      | pg/g                   | ND          | ND      | ND      | NÐ           | ND           | ND      | ND         | ND      | ND      | ND      |
| 13  | 1,2,3,7,8,9-HxCDF      | pg/g                   | ND          | NÐ      | NÐ      | 0.152 J EMPC | 0.071 J      | ND      | ND         | ND      | ND      | ND      |
| 14  | 2,3,4,6,7,8-HxCDF      | pg/g                   | ND          | ND      | ND      | ND           | 0.075 J EMPC | ND      | ND         | ND      | ND      | ND      |
| 15  | 1,2,3,4,6,7,8-HpCDF    | pg/g                   | 0,113 3     | ND      | NÐ      | ND           | ND           | ND      | ND         | ND      | ND      | ND      |
| 16  | 1,2,3,4,7,8,9-HpCDF    | pg/g                   | ND          | 0.221 J | ND      | ND           | NÐ           | ND      | ND         | NÐ      | ND      | ND      |
| 17  | OCDF                   | pg/g                   | ND          | 0,918 J | ND      | 0.60\$ J     | ND           | ND      | ND         | ND      | NÐ      | ND      |
|     | WHO-2005 TEQ (ND=0), p | og/g                   | 0.0332      | 0.0122  | 0.0163  | 0.2846       | 0.3266       | 0.0475  | 0.0493     | 0.0056  | 0.0062  | 0.0096  |

# NOTES:

J: Estimated amount detected between detection limit and reporting limit

EMPC: Estimated maximum possible concentration due to ion raio failure

33/8

| <u>.</u> | B                      | orehole → | E11-163   | E11-164 | E11-164      | E11-164      | E11-164 | E11-165      | E11-165      | E11-165     | E11-165      | E11-166      |
|----------|------------------------|-----------|-----------|---------|--------------|--------------|---------|--------------|--------------|-------------|--------------|--------------|
| No       | Sa                     | mple ID → | S4        | S1      | S2           | 53           | S4      | S1           | S2           | 53          | S4           | \$1          |
|          | Analyte↓ D             | epth, m → | ~10.0     | 0.0~0.5 | ~2.0         | ~5.0         | ~11.0   | 0.0~0.5      | ~2.0         | ~5.0        | ~10.0        | 0.3~0.8      |
| 1        | 2,3,7,8-TCDD           | pg/g      | ND        | ND      | NÐ           | 0.108 J EMPC | ND      | 0.077 J EMPC | ND           | ND          | ND           | 0.188 J EMPC |
| 2        | 1,2,3,7,8-PeCDD        | pg/g      | ND        | ND      | 0.192 J EMPC | ND           | ND      | ND           | ND           | ND          | ND           | 0,112 J      |
| 3        | 1,2,3,4,7,8-HxCDD      | pg/g      | ND        | NÐ      | ND           | ND           | ND      | ND           | ND           | NÐ          | ND           | ND           |
| 4        | 1,2,3,6,7,8-HxCDD      | pg/g      | ND        | ND      | 0.313 J EMPC | ND           | ND      | NÐ           | ND           | ND          | ND           | ND           |
| 5        | 1,2,3,7,8,9-HxCDD      | pg/g      | ND        | ND      | 0.375 JEMPC  | 0.093 J EMPC | ND      | ND           | ND           | ND          | ND           | ND           |
| 6        | 1,2,3,4,6,7,8-HpCDD    | pg/g      | ND        | ND      | 0.811 JEMPC  | 0,422 J      | ND      | 0.996 J      | 0.892 J      | 1.79 J EMPC | 1.11 J       | 0.906 )      |
| 7        | OCDD                   | pg/g      | 7.99 EMPC | 22.5    | 34.4         | 19.1         | 20.1    | 24           | 29.1         | 40.4        | 51,5         | 22.7         |
| 8        | 2,3,7,8-TCDF           | pg/g      | ND        | ND      | ND           | ND           | ND      | ND           | 0.364 J      | ND          | 0.333 J EMPC | ND           |
| 9        | 1,2,3,7,8-PeCDF        | pg/g      | ND        | ND      | 0.264 J      | 0.076 J      | ND      | ND           | 0.113 J      | ND          | ND           | 0.129 J EMPC |
| 10       | 2,3,4,7,8-PeCDF        | pg/g      | ND        | ND      | 0.218 J EMPC | 0.087 J EMPC | ND      | ND           | 0.159 J EMPC | ND          | ND           | ND J EMPC    |
| 11       | 1,2,3,4,7,8-HxCDF      | pg/g      | ND        | ND      | ND           | ND           | ND      | 0.106 J EMPC | ND           | ND          | ND           | 0.141 J EMPC |
| 12       | 1,2,3,6,7,8-HxCDF      | pg/g      | ND        | ND      | NÐ           | ND           | ND      | 0.087 J EMPC | ND           | ND          | ND           | ND           |
| 13       | 1,2,3,7,8,9-HxCDF      | pg/g      | ND        | ND      | ND           | ND           | NÐ      | ND           | ND           | ND          | ND           | 0.108 J      |
| 14       | 2,3,4,6,7,8-HxCDF      | pg/g      | ND        | ND      | ND           | ND           | ND      | 0.093 J      | ND           | ND          | ND           | 0.141 J      |
| 15       | 1,2,3,4,6,7,8-HpCDF    | pg/g      | ND        | ND      | ND           | ND           | ND      | 0.505 JEMPC  | 0.253 J EMPC | 0.428 J     | 0.288 J EMPC | ND           |
| 16       | 1,2,3,4,7,8,9-HpCDF    | pg/g      | ND        | ND      | ND           | ND           | ND      | ND           | ND           | ND          | NÐ           | ND           |
| 17       | OCDF                   | pg/g      | ND        | ND      | ND           | ND           | ND      | 0,474 J      | ND           | 1,02 ]      | ND           | 0.429 J EMPC |
|          |                        |           |           |         |              |              |         |              |              |             |              |              |
|          | WHO-2005 TEQ (ND≂0), p | g/g       | 0.0024    | 0.0068  | 0.3526       | 0.1556       | 0.0060  | 0.1277       | 0.1077       | 0.0346      | 0.0627       | 0.3589       |

NOTES:

J: Estimated amount detected between detection limit and reporting limit

EMPC: Estimated maximum possible concentration due to ion raio failure

ND: Not detected

|    | Bor                      | $\bullet$ ehole $\rightarrow$ | E11-166      | E11-167      | E11-167      | E11-167      | E11-168      | E11-168    | E11-169   | E11-169 | E11-170      | E11-170     |
|----|--------------------------|-------------------------------|--------------|--------------|--------------|--------------|--------------|------------|-----------|---------|--------------|-------------|
| No | Sam                      | ple ID $\rightarrow$          | S2           | S1           | S2           | S3           | S1           | <b>S</b> 2 | <b>S1</b> | S2      | S1           | S2          |
|    | Analyte↓ Dep             | oth, m $\rightarrow$          | ~2.7         | 0.0~0.5      | ~2.0         | °.<.∼5,5     | 0.0~0.5      | ~3.0       | 0.0~0.5   | ~1.8    | 0.0~0.5      | ~2.0        |
| 1  | 2,3,7,8-TCDD             | pg/g                          | 0.251 J EMPC | NÐ           | ND           | ND           | ND           | ND         | ND        | ND      | 0.156 J EMPC | 0.155 J EMP |
| 2  | 1,2,3,7,8-PeCDD          | pg/g                          | ND           | ND           | 0.116 J EMPC | ND           | ND           | ND         | 0.201 J   | ND      | 0,269 JEMPC  | 0.451 J     |
| 3  | 1,2,3,4,7,8-HxCDD        | pg/g                          | NÐ           | ND           | NÐ           | NÐ           | 0.682 J EMPC | ND         | ND        | ND      | 0,484 J      | 0,996 J     |
| 4  | 1,2,3,6,7,8-HxCDD        | pg/g                          | ND           | NÐ           | ND           | ND           | ND           | ND         | ND        | NÐ      | 1,19 J       | 2.97        |
| 5  | 1,2,3,7,8,9-HxCDD        | pg/g                          | ND           | 0.143 J      | ND           | ND           | ND           | ND         | ND        | NÐ      | 0,996 J      | 2.35 J      |
| 6  | 1,2,3,4,6,7,8-HpCDD p    | og/g                          | ND           | 4.11 EMPC    | 3,74         | 1,14 J EMPC  | 13           | ND         | 4,66      | 1.54 J  | 34,5         | 76.9        |
| 7  | 0CDD p                   | og/g                          | 10.2         | 80,7         | 70,1         | 54.5         | 132          | 9.35 EMPC  | 66        | 57.6    | 306          | 639         |
| 8  | 2,3,7,8-TCDF f           | og/g                          | ND           | 2.26         | ND           | NO           | ND           | ND         | ND        | ND      | 21.3         | 16.4        |
| 9  | 1,2,3,7,8-PeCDF p        | og/g                          | ND           | 0,375 J EMPC | 0.243 J EMPC | ND           | 0.525 J EMPC | ND         | ND        | ND      | 2.67         | 2.07 J      |
| 10 | 2,3,4,7,8-PeCDF p        | og/g                          | ND           | 0.254 J EMPC | 0.152 J      | ND           | 0.42 J       | ND         | NÐ        | ND      | 1.61 J       | 1.41 J      |
| 11 | 1,2,3,4,7,8-HxCDF p      | og/g                          | ND           | 0.356 J EMPC | 0.297 J      | ND           | 0.882 J EMPC | ND         | 0.481 J   | ND      | 1.46 J       | 1.51 J      |
| 12 | 1,2,3,6,7,8-HxCDF p      | vg/g                          | ND           | ND           | 0,205 J EMPC | ND           | NÐ           | ND         | 0.397 J   | ND      | 0.544 J EMPC | D.895 J     |
| 13 | 1,2,3,7,8,9-HxCDF p      | og/g                          | ND           | ND           | ND           | ND           | ND           | ND         | ND        | ND      | 0.324 J      | 0.328 JEMP( |
| 14 | 2,3,4,6,7,8-HxCDF p      | pg/g                          | ND           | ND           | ND           | ND           | 0.397 J      | ND         | 0.371 J   | ND      | 0.521 J      | 0.899 J     |
| 15 | 1,2,3,4,6,7,8-HpCDF p    | og/g                          | ND           | 1.67 J EMPC  | 1,58 J       | ND           | 3.37         | ND         | 2.4       | NÐ      | 7.6          | 15.1        |
| 16 | 1,2,3,4,7,8,9-HpCDF p    | og/g                          | ND           | ND           | ND           | ND           | ND           | ND         | 0.45 J    | NÐ      | 0.52 JEMPC   | 0.917 J     |
| 17 | OCDF p                   | og/g                          | ND           | 3.49 J       | 2.77 \$      | 0.409 J EMPC | 7.43         | NÐ         | 5.15      | ND      | 14,5         | 28.5        |
|    | ·····                    |                               |              |              |              |              |              |            |           |         |              |             |
|    | WHO-2005 TEQ (ND=0), pg/ | 'g                            | 0.2541       | 0.4464       | 0.2942       | 0.0279       | 0.5434       | 0.0029     | 0.4223    | 0.0327  | 4.1924       | 4.8553      |

#### NOTES:

J: Estimated amount detected between detection limit and reporting limit EMPC: Estimated maximum possible concentration due to ion raio failure ND: Not detected

|    | Bor                      | ehole $\rightarrow$  | E11-170     | E11-170      | E11-171      | E11-171      | E11 171      | E11-172   | E11-172 | E11-172      | E11-172 | E11-173   |
|----|--------------------------|----------------------|-------------|--------------|--------------|--------------|--------------|-----------|---------|--------------|---------|-----------|
| No | Sam                      | ple ID $\rightarrow$ | S3          | S4           | S1           | <b>\$2</b>   | S3           | S1        | S2      | S3           | S4      | <b>S1</b> |
|    | Analyte J Dep            | ith, m $\rightarrow$ | ~5.0        | ~7.5         | 0.0~0.5      | ~2.0         | ~6.5         | 0.0~0.5   | ~2.0    | ~5.0         | ~8.7    | 0.0~0.5   |
| 1  | 2,3,7,8-TCDD p           | og/g                 | NÐ          | ND           | ND           | ND           | 7.44         | ND        | ND      | ND           | ND      | ND        |
| 2  | 1,2,3,7,8-PeCDD p        | og∕g                 | ND          | ND           | ND           | ND           | 0.503 J EMPC | ND        | ND      | ND           | ND      | 0.618 J   |
| 3  | 1,2,3,4,7,8-HxCDD p      | og/g                 | ND          | NÐ           | 0.36 J EMPC  | 0,322 J      | 0.685 1      | NÐ        | ND      | ND           | ND      | 0.639 J   |
| 4  | 1,2,3,6,7,8-HxCDD p      | og/g                 | ND          | ND           | 0.927 J      | ND           | 2,52 J       | ND        | ND      | ND           | ND      | -2.2 )    |
| 5  | 1,2,3,7,8,9-HxCDD p      | og/g                 | NÐ          | ND           | 0.567 J      | ND           | 1.66 /       | ND        | ND      | ND           | ND      | 1.3 J     |
| 6  | 1,2,3,4,6,7,8-HpCDD p    | og/g                 | 0.708 1     | 1,68 J       | 26.5         | 8,17         | \$5.5        | 6.94      | ND      | 0,633 J EMPC | ND      | 49.1      |
| 7  | OCDD p                   | og/g                 | 35,9        | 82.9         | 247          | 81.5         | 576          | 101       | 22.4    | 20.2         | 34.4    | 387       |
| 8  | 2,3,7,8-TCDF p           | vg/g                 | NÐ          | 0.359 J EMPC | ND           | ND           | ND           | 1.14 EMPC | ND      | ND           | ND      | 3.09      |
| 9  | 1,2,3,7,8-PeCDF p        | e/g                  | ND          | ND           | ND           | ND           | 0.379 J      | ND        | ND      | ND           | ND      | 1,08 J    |
| 10 | 2,3,4,7,8-PeCDF p        | g/g                  | 0.063 J     | NÐ           | 0.45 JEMPC   | 0.294 J EMPC | 0.904 1      | ND        | ND      | ND           | ND      | 1,18 J    |
| 11 | 1,2,3,4,7,8-HxCDF p      | og/g                 | ND          | ND           | 0,807 1      | 0.232 J      | 1.72 J       | ND        | ND      | ND           | NÐ      | 1,51 )    |
| 12 | 1,2,3,6,7,8-HxCDF p      | g/g                  | ND          | ND           | 0.539 J EMPC | ND           | 1.07 J       | NÐ        | ND      | ND           | ND      | 1.19 J    |
| 13 | 1,2,3,7,8,9-HxCDF p      | g/g                  | ND          | ND           | 0.258 J      | ND           | 0.448 J      | NÐ        | ND      | ND           | ND      | 0.403 J   |
| 14 | 2,3,4,6,7,8-HxCDF p      | g/g                  | ND          | NÐ           | 0.499 J      | NÐ           | 1.17.1       | ND        | ND      | ND .         | ND      | 1,2 J     |
| 15 | 1,2,3,4,6,7,8-HpCDF p    | g/g                  | 0.086 JEMPC | ND           | 7.21         | 1.55 J       | 18.4         | 1.73 J    | ND      | ND           | ND      | 14.3      |
| 16 | 1,2,3,4,7,8,9-HpCDF p    | g/g                  | NÐ          | ND           | ND           | ND           | 1.16 J       | ND        | ND      | ND           | ND      | 1.02 J    |
| 17 | OCDF p                   | g/g                  | ND          | ND           | 16,3         | 2,91 J       | 36.8         | 5.73 EMPC | ND      | ND           | ND      | 41.1      |
|    |                          |                      |             |              |              |              |              |           |         |              |         |           |
|    | WHO-2005 TEQ (ND≈0), pg/ | g                    | 0.0375      | 0.0776       | 0.9468       | 0.2661       | 10.0873      | 0.2327    | 0.0067  | 0.0124       | 0.0103  | 2.9302    |

#### NOTES:

J: Estimated amount detected between detection limit and reporting limit EMPC: Estimated maximum possible concentration due to ion raio failure ND: Not detected

|    |                           | 10le → | E11-173      | E11-173      | E11-173      | E11-174      | E11-174      | E11-174 | E11-174      | E11-175      | E11-175 | E11-175      |
|----|---------------------------|--------|--------------|--------------|--------------|--------------|--------------|---------|--------------|--------------|---------|--------------|
| No | Sampl                     | e ID → | 52           | \$3          | S4           | S1           | S2           | \$3     | S4           | S1           | S2      | S3           |
|    | Analyte J Depth           | ı, m → | ~2.0         | ~5.0         | ~10.0        | 0.3~0.8      | ~2.3         | 2.3~5.3 | ~8.9         | 0.0~0,5      | ~2.0    | ~5.0         |
| 1  | 2,3,7,8-TCDD pg           | /g     | NÐ           | ND           | ND           | 0.312 J EMPC | ND           | ND      | ND           | ND           | ND      | ND           |
| 2  | 1,2,3,7,8-PeCDD pg        | /g     | 0,143 J      | NÐ           | ND           | ND           | ND           | ND      | ND           | 0.395 J EMPC | ND      | ND           |
| 3  | 1,2,3,4,7,8-HxCDD pg      | /g     | ND           | ND           | ND           | 0.301 J EMPC | NÐ           | ND      | ND           | 0.46 J       | ND      | ND           |
| 4  | 1,2,3,6,7,8-HxCDD pg      | /g     | ND           | NĎ           | NÐ           | 1.05 J EMPC  | 0.275 J      | NÐ      | ND           | 1.41 J       | ND      | 0.068 J EMPC |
| 5  | 1,2,3,7,8,9-HxCDD pg      | /g     | ND           | ND           | ND           | 0.608 J EMPC | 0.163 J EMPC | NO      | 0.079 J EMPC | 0.85 )       | ND      | 0.116 J      |
| 6  | 1,2,3,4,6,7,8-HpCDD pg    | /g     | 2.4 J        | 1.11 J       | 0.483 J EMPC | 23.8         | 6.15         | ND      | 0.751 JEMPC  | 21.6         | 1.54 J  | 1.17 J EMPC  |
| 7  | OCDD pg                   | /g     | 106          | 28.2         | 9.68         | 240          | 72.6         | 4.09 J  | 17.9         | 134          | 35,5    | 20,8         |
| 8  | 2,3,7,8-TCDF pg,          | /g     | 0.271 J      | 0.28 J       | 0.289 J EMPC | ND           | ND           | ND      | ND           | 0.607        | ND      | ND           |
| 9  | 1,2,3,7,8-PeCDF pg,       | /g     | ND           | NÐ           | ND           | NÐ           | ND           | ND      | ND           | 0.894 J      | ND      | 0,07 J EMPC  |
| 10 | 2,3,4,7,8-PeCDF pg,       | /g     | 0,254 J      | 0,156 J      | ND           | ND           | ND           | ND      | 0.088 J EMPC | 1,3 J        | ND      | 0.104 J      |
| 11 | 1,2,3,4,7,8-HxCDF pg,     | /g     | 0.198 J      | 0.139 J EMPC | NÐ           | 0.535 J EMPC | ND           | ND      | ND           | 1.95 J EMPC  | ND      | 0,076 J EMPC |
| 12 | 1,2,3,6,7,8-HxCDF pg/     | /g     | 0,211 J      | 0.128 JEMPC  | ND           | 0.457 J      | ND           | NÐ      | ND           | 1.17 J       | ND      | 0.091 J      |
| 13 | 1,2,3,7,8,9-HxCDF pg/     | /g     | ND           | ND           | ND           | NÐ           | ND           | ND      | ND           | 0.617 J      | ND      | NÐ           |
| 14 | 2,3,4,6,7,8-HxCDF pg/     | /g     | 0.137 J      | ND           | ND           | 0,477 3      | ND           | ND      | ND           | 1.12 JEMPC   | ND      | NÐ           |
| 15 | 1,2,3,4,6,7,8-HpCDF pg/   | /g     | 0.504 J EMPC | 0.323 J      | NÐ           | 7.1          | 1.82 /       | ND      | ND           | 9.42         | ND      | 0.753 J EMPC |
| 16 | 1,2,3,4,7,8,9-HpCDF pg/   | /g     | ND           | NÐ           | ND           | 0.486 J EMPC | ND           | ND      | ND           | ND           | ND      | NÐ           |
| 17 | OCDF pg/                  | /g     | 1.23 J       | ND           | ND           | 13.3         | 3.61 J       | ND      | ND           | 6.76         | ND      | 0.87 J EMPC  |
|    |                           |        |              |              |              |              |              |         |              |              |         |              |
|    | WHO-2005 TEQ (ND=0), pg/g | Ĩ      | 0.3651       | 0.1243       | 0.0366       | 1.0447       | 0.1464       | 0.0012  | 0.0471       | 1.9836       | 0.0261  | 0.0941       |

t

•

ŧ

# NOTES:

J: Estimated amount detected between detection fimit and reporting limit EMPC: Estimated maximum possible concentration due to ion raio failure

ND: Not detected

|    | Boreho                    | le → E11-175 | E11-176      | E11-176      | E11-176      | E11-176      | E11-177      | E11-177      | E11-177     | E11-177 | E11-178      |
|----|---------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-------------|---------|--------------|
| No | Sample                    | ID → S4      | S1           | S2           | S3           | .S4          | S1           | S2           | S3          | S4      | S1 ····      |
|    | Analyte↓ Depth,           | m → ~7.25    | 0.0~0.5      | ~2.0         | ~5.0         | ~10.0        | 0.4~0.9      | ~2.4         | ~5.4        | ~9.0    | 0.0~0.5      |
| 1  | 2,3,7,8-TCDD pg/          | 0.129 J EMP( | 0.201 J EMPC | 0.135 J EMPC | ND           | ND           | 0.317 J EMPC | ND           | ND          | ND      | 0.207 J EMPO |
| 2  | 1,2,3,7,8-PeCDD pg/       | 0.042 J EMP( | 0.284 J      | ND           | 0.168 J      | ND           | 0,531 J EMPC | NÐ           | ND          | ND      | ND           |
| 3  | 1,2,3,4,7,8-HxCDD pg/     | S ND         | 0.358 J      | ND           | ND           | ND           | 0.628 J EMPC | ND           | ND          | ND      | 0.491 ) EMPO |
| 4  | 1,2,3,6,7,8-HxCDD pg/     | ND           | 1.16 J       | 0.308 J EMPC | ND           | ND           | 1,93 J       | ND           | ND          | ND      | 1.94 J       |
| 5  | 1,2,3,7,8,9-HxCDD pg/     | ND           | 0.631 J EMPC | ND           | ND           | ND           | 1.49 J       | ND           | ND          | ND      | 0.583 )      |
| 6  | 1,2,3,4,6,7,8-HpCDD pg/1  | 0.771 J      | 24.8         | 4:44         | 0.576 J      | 0.872 J EMPC | 53.7         | 2.49 EMPC    | 0.672 JEMPC | 1.05 J  | 46.5         |
| 7  | OCDD pg/j                 | 37.2         | 208          | 67           | 13.9         | 9.97         | 457          | 44.1         | 32,1        | 20,3    | 278          |
| 8  | 2,3,7,8-TCDF pg/s         | ND           | 3,86         | 0.5 J        | ND           | 0.21 J EMPC  | ND           | NÐ           | ND          | ND      | 1.02         |
| 9  | 1,2,3,7,8-PeCDF pg/g      | 0.06 J EMPC  | 0.604 J      | ND           | ND           | ND           | NÐ           | ND           | ND          | ND      | 0.274 JEMPC  |
| 10 | 2,3,4,7,8-PeCDF pg/(      | 0.078 J      | 0.566 J EMPC | 0.251 J      | ND           | ND           | ND           | ND           | 0.098 J     | NĎ      | 0.784 J      |
| 11 | 1,2,3,4,7,8-HxCDF pg/(    | 0.04 JEMPO   | 0.698 J EMPC | 0.261 J EMPC | 0.141 J      | ND           | 0,925 J      | 0.333 J EMPC | NÐ          | ND      | 0.958 J      |
| 12 | 1,2,3,6,7,8-HxCDF pg/f    | ND           | 0.495 J EMPC | 0.217 J      | 0.17 JEMPC   | ND           | 0,645 JEMPC  | 0.277 JEMPC  | ND          | ND      | 0.737 J      |
| 13 | 1,2,3,7,8,9-HxCDF pg/f    | ND           | 0,307 J      | ND           | ND           | ND           | ND           | NÐ           | ND          | NÐ      | ND           |
| 14 | 2,3,4,6,7,8-HxCDF pg/{    | ND           | 0.517 J      | 0.118 J      | 0.121 J      | ND           | 0.912 J      | 0.233 J      | ND          | NÐ      | 0.993 J      |
| 15 | 1,2,3,4,6,7,8-HpCDF pg/g  | 0.178 J EMPC | 7.98         | 1.25 J       | 0.152 J EMPC | ND           | 11.4         | 1.43 J EMPC  | ND          | ND      | 19.7         |
| 16 | 1,2,3,4,7,8,9-HpCDF pg/g  | ND           | ND           | ND           | ND           | ND           | 0.601 J EMPC | ND           | ND          | ND      | 0.727 J EMPC |
| 17 | OCDF pg/g                 | 0.278 J      | 23.6         | 2.74 J EMPC  | ND           | ND           | 23,7         | 2.88 J       | ND          | ND      | 20.2         |
|    |                           |              |              |              |              |              |              |              |             |         |              |
|    | WHO-2005 TEQ (ND≈0), pg/g | 0.2211       | 1.8728       | 0.4285       | 0.2227       | 0.0327       | 2.3022       | 0.1376       | 0.0457      | 0.0166  | 1.8814       |

. . . . . . . . . . .

# NOTES:

J: Estimated amount detected between detection limit and reporting limit EMPC: Estimated maximum possible concentration due to ion raio failure ND: Not detected

|    | Bore                      | ehole $\rightarrow$ | E11-178      | E11-178      | E11-178      | E11-179      | E11-179 | E11-179      | E11-179      | E11-180     | E11-180      | E11-180                                |
|----|---------------------------|---------------------|--------------|--------------|--------------|--------------|---------|--------------|--------------|-------------|--------------|----------------------------------------|
| No | Samp                      | ole ID 🔿            | S2           | \$3          | S4           | \$1          | \$2     | S3           | <b>S4</b>    | <b>S1</b>   | S2           | S3                                     |
|    | Analyte J Dep             | th, m →             | ~2.0         | ~5.0         | ~10.0        | 0.0~0.5      | ~2.0    | ~5.0         | ~10.0        | 0.0~0.5     | ~2.0         | ~5.0                                   |
| 1  | 2,3,7,8-TCDD p            | e/g                 | 0.092 J EMPC | NÐ           | NÐ           | ND           | ND      | 0.118 JEMPC  | NÐ           | ND          | ND           | ND                                     |
| 2  | 1,2,3,7,8-PeCDD p         | g/g                 | ND           | ND           | ND           | 0.267 J EMPC | ND      | 0.085 J      | ND           | ND          | ND           | NÐ                                     |
| 3  | 1,2,3,4,7,8-HxCDD p       | g/g                 | ND           | ND           | ND           | ND           | NÐ      | ND           | ND           | NÐ          | ND           | NĎ                                     |
| 4  | 1,2,3,6,7,8-HxCDD p       | g/g                 | ND           | ND           | ND           | 0,28 )       | ND      | ND           | ND           | 0.287 JEMPC | NÐ           | ND                                     |
| 5  | 1,2,3,7,8,9-HxCDD p       | g/g                 | 0.286 J      | NÐ           | NÐ           | ND           | ND      | 0.108 J EMPC | ND           | 0,178 J     | ND           | ND                                     |
| 6  | 1,2,3,4,6,7,8-HpCDD p     | g/g                 | 0.971 J      | 0,793 /      | 1,57 )       | S.04 EMPC    | 1.15 J  | 0.481 J      | 1,91 J       | 6.71        | 0.649 J EMPC | 3.13                                   |
| 7  | OCDD p                    | g/g                 | 37,1         | 31.2         | 62,3         | 63.9         | 40.3    | 11.5         | 59           | 83.4        | 26.8         | 67.8                                   |
| 8  | 2,3,7,8-TCDF p            | g/g                 | ND           | ND           | ND           | 0.642 EMPC   | 0.338 J | 0.179 J EMPC | ND           | ND          | ND           | ND                                     |
| 9  | 1,2,3,7,8-PeCDF p         | g/g                 | 0.123 J EMPC | ND           | NÐ           | ND           | ND      | ND           | ND           | NÐ          | ND           | ND                                     |
| 10 | 2,3,4,7,8-PeCDF p         | g/g                 | 0.119 J EMPC | ND           | ND           | 0.238 J EMPC | ND      | 0.099 J EMPC | 0.096 J EMPC | ND          | ND           | NÐ                                     |
| 11 | 1,2,3,4,7,8-HxCDF p       | g/g                 | 0.092 J      | ND           | ND           | 0.228 J EMPC | ND      | 0.089 J      | ND           | ND          | NĎ           | ND                                     |
| 12 | 1,2,3,6,7,8-HxCDF p       | g/g                 | 0.083 J      | ND           | 0.081 J EMPC | D.22 J EMPC  | ND .    | 0.067 J EMPC | ND           | ND          | ND           | ND                                     |
| 13 | 1,2,3,7,8,9-HxCDF p       | g/g                 | 0.083 J EMPC | ND           | ND           | NÐ           | ND      | ND           | ND           | ND          | ND           | ND                                     |
| 14 | 2,3,4,6,7,8-HxCDF p       | g/g                 | NÐ           | ND           | ND           | NÐ           | ND      | 0.061 J EMPC | ND           | ND          | ND           | ND                                     |
| 15 | 1,2,3,4,6,7,8-HpCDF p     | g/g                 | 0.181 J      | 0.382 J EMPC | 0.239 J EMPC | 2 J          | 0.249 J | 0,112 1      | ND           | 2.22 J      | ND           | 0.721 J EMPC                           |
| 16 | 1,2,3,4,7,8,9-HpCDF p     | g/g                 | ND           | ND           | ND           | ND           | ND      | ND           | ND           | NÐ          | ND           | NÐ                                     |
| 17 | OCDF PI                   | g/g                 | 0.729 J      | ND           | ND           | 5.83         | ND      | ND           | ND           | 4.65        | ND           | 3.95 J EMPC                            |
|    |                           |                     |              |              |              |              |         |              |              | ,           |              | ** • • • • • • • • • • • • • • • • • • |
|    | WHO-2005 TEQ (ND≂0), pg/g | <b>y</b>            | 0.2084       | 0.0185       | 0.0449       | 0.5667       | 0.0599  | 0.2928       | 0.0656       | 0.1622      | 0.0145       | 0.0600                                 |

#### NOTES:

J: Estimated amount detected between detection limit and reporting limit EMPC: Estimated maximum possible concentration due to ion raio failure ND: Not detected

3324

|    | В                      | iorehole $\rightarrow$ | E11-180      | E11-181      | E11-181 | E11-181      | E11-182      | E11-182      | E11-182      | E11-182      | E11-183      | E11-183      |
|----|------------------------|------------------------|--------------|--------------|---------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| No | Sa                     | imple ID →             | <b>\$4</b>   | S1           | S2      | S3           | S1           | \$2          | S3           | 54           | <b>S1</b>    | S2           |
|    | Analyte↓ D             | epth, m →              | ~10.0        | 0.0~0.5      | ~2.0    | ~5,0         | 0.0~0.5      | ~2.0         | ~5.0         | <b>^10.0</b> | 0.0~0.5      | ~2.0         |
| 1  | 2,3,7,8-TCDD           | pg/g                   | ND           | 0.57         | ND      | ND           | ND           | ND           | ND           | ND           | ND           | ND           |
| 2  | 1,2,3,7,8-PeCDD        | pg/g                   | ND           | ND           | ND      | NÐ           | ND           | ND           | ND           | ND           | ND           | ND           |
| 3  | 1,2,3,4,7,8-HxCDD      | pg/g                   | ND           | ND           | ND      | ND           | ND           | ND           | ND           | ND           | ND           | ND           |
| 4  | 1,2,3,6,7,8-HxCDD      | pg/g                   | ND           | 0.356 J EMPC | NÐ      | ND           |
| 5  | 1,2,3,7,8,9-HxCDD      | pg/g                   | ND           | ND           | ND      | ND           | ND           | NÐ           | ND           | ND           | ND           | ND           |
| 6  | 1,2,3,4,6,7,8-HpCDD    | pg/g                   | 0.579 J.EMPC | 7.97         | 0.559 J | 0.821 J EMPC | 1.35 J EMPC  | 1.96 J       | 2,14 J       | 0.798 J      | 0.857 JEMPC  | 0.327 J EMPC |
| 7  | OCDD                   | pg/g                   | 16,7         | 69           | 23.6    | 31.9         | 32.9         | 54.1         | 41.3         | 26.3         | 38.6         | 17,1         |
| 8  | 2,3,7,8-TCDF           | pg/g                   | ND           | ND           | NÐ      | ND           | 0.338 J EMPC | 0.327 J EMPC | 0.369 J EMPC | 0.437 J      | 0.257 J      | 0.333 J      |
| 9  | 1,2,3,7,8-PeCDF        | pg/g                   | ND           | NÐ           | ND      | ND .         | ND           | NÐ           | ND           | ND           | ND           | ND           |
| 10 | 2,3,4,7,8-PeCDF        | pg/g                   | ND           | 0.222 J      | ND      | NÐ           | ND           | ND           | NÐ           | ND           | ND           | 0.13 J       |
| 11 | 1,2,3,4,7,8-HxCDF      | pg/g                   | ND           | ND           | NÐ      | ND           |
| 12 | 1,2,3,6,7,8-HxCDF      | pg/g                   | ND           | NÐ           | ND      | ND           | ND           | ND           | ND           | ND           | ND           | ND           |
| 13 | 1,2,3,7,8,9-HxCDF      | pg/g                   | ND           | ND           | ND      | ND           | ND           | ND           | ND           | ND           | ND           | ND           |
| 14 | 2,3,4,6,7,8-HxCDF      | pg/g                   | NÐ           | ND           | ND      | ND           | ND           | NÐ           | ND .         | ND           | ND           | ND           |
| 15 | 1,2,3,4,6,7,8-HpCDF    | pg/g                   | ND           | 1.93 J       | ND      | 0.185 J EMPC | 0.426 J      | 0.561 J      | 0.617 J EMPC | ND           | 0.228 J EMPC | ND           |
| 16 | 1,2,3,4,7,8,9-HpCDF    | pg/g                   | ND           | ND           | ND      | ND           | ND           | ND           | NÐ           | ND           | ND           | ND           |
| 17 | OCDF                   | pg/g                   | ND           | 3.46 J       | ND      | ND           | 0.648 J      | 1,07 J       | ND           | ND           | ND           | ND           |
|    |                        |                        |              |              |         |              |              |              |              |              |              |              |
|    | WHO-2005 TEQ (ND≈0), p | g/g                    | 0.0108       | 0.7929       | 0.0127  | 0.0196       | 0.0616       | 0.0745       | 0.0769       | 0.0596       | 0.0481       | 0.0807       |

3395

5

#### NOTES:

J: Estimated amount detected between detection limit and reporting limit  $\mathsf{EMPL}$ : Estimated maximum possible concentration due to ion raio failure

|    |                        | Borehole $\rightarrow$ | E11-183 | E11-183 | E11-184      | E11-184 | E11-184      | E11-184 | E11-185      | E11-185      | E11-185      | E11-185 |
|----|------------------------|------------------------|---------|---------|--------------|---------|--------------|---------|--------------|--------------|--------------|---------|
| No | Sa                     | ample ID →             | S3      | S4      | S1           | S2      | S3           | S4      | S1           | S2           | 53           | S4      |
|    | Analyte↓ D             | Depth, m $\rightarrow$ | ~5.0    | ~10.0   | 0.0~0.5      | ~2.0    | ~5.0         | ~8.75   | 0.0~0.5      | ~2.0         | ~5.0         | ~8,8    |
| 1  | 2,3,7,8-TCDD           | pg/g                   | ND      | ND      | 0,502 EMPC   | ND      | ND           | ND      | 0.058 J EMPC | 0.08 JEMPC   | 0.121 J EMPC | ND      |
| 2  | 1,2,3,7,8-PeCDD        | pg/g                   | ND      | ND      | 0.208 J      | ND      | ND           | ND      | 0.051 J      | ND           | ND           | ND      |
| 3  | 1,2,3,4,7,8-HxCDD      | pg/g                   | ND      | NÐ      | ND           | ND      | NÐ           | ND      | 0.053 J      | ND           | ND           | ND      |
| 4  | 1,2,3,6,7,8-HxCDD      | pg/g                   | ND      | ND      | 0.502 J EMPC | ND      | ND           | ND      | 0.085 J EMPC | ND           | ND           | ND      |
| 5  | 1,2,3,7,8,9-HxCDD      | pg/g                   | ND      | ND      | 0.506 J EMPC | ND      | ND           | ND      | 0.074 J      | ND           | ND           | ND      |
| 6  | 1,2,3,4,6,7,8-HpCDD    | pg/g                   | ND      | 0.749 J | 12.2         | 1,71 J  | ND           | ND      | 1.28 J       | 0.966 J EMPC | 0,587 J      | ND      |
| 7  | OCDD                   | pg/g                   | 15.2    | 31,8    | 81.5         | 30      | 11.1         | 2.7 J   | 29.8         | 30.1         | 23.5         | 5.98    |
| 8  | 2,3,7,8-TCDF           | pg/g                   | 0.177 } | ND      | 0.969        | ND      | 0,245 J EMPC | 0,206 J | ND           | 0.241 J      | ND           | ND      |
| 9  | 1,2,3,7,8-PeCDF        | pg/g                   | ND      | ND      | 0.868 J      | NÐ      | ND           | ND      | ND           | ND           | 0.094 J EMPC | ND      |
| 10 | 2,3,4,7,8-PeCDF        | pg/g                   | ND      | NÐ      | 1.42 J       | ND      | ND           | ND      | ND           | ND           | 0.123 J EMPC | ND      |
| 11 | 1,2,3,4,7,8-HxCDF      | pg/g                   | ND      | NĎ      | 1.26 JEMPC   | ND      | ND           | ND      | ND           | ND           | 0.121 JEMPC  | ND      |
| 12 | 1,2,3,6,7,8-HxCDF      | pg/g                   | ND      | ND      | 0.71 J       | NÐ      | ND           | ND      | ND           | ND           | 0,16 J       | ND      |
| 13 | 1,2,3,7,8,9-HxCDF      | pg/g                   | ND      | ND      | ND           | ND      | ND           | ND      | ND           | ND           | 0.065 J EMPC | ND      |
| 14 | 2,3,4,6,7,8-HxCDF      | pg/g                   | ND      | ND      | 0.588 J EMPC | ND      | ND           | ND      | 0.053 J      | ND           | ND           | ND      |
| 15 | 1,2,3,4,6,7,8-HpCDF    | pg/g                   | NÐ      | ND      | 2.25 J EMPC  | 0.482 J | 0.349 J      | ND      | ND           | ND           | 0.31 JEMPC   | ND      |
| 16 | 1,2,3,4,7,8,9-HpCDF    | pg/g                   | ND      | ND      | ND           | ND      | ND           | ND      | 0.084 J EMPC | ND           | ND           | ND      |
| 17 | OCDF                   | pg/g                   | ND      | ND      | 3.18 3       | 1.62 J  | ND           | NÐ      | 0.66 J       | 0.379 J EMPC | ND           | ND      |
|    |                        |                        |         |         |              |         |              |         |              |              |              |         |
|    | WHO-2005 TEQ (ND=0), p | g/g                    | 0.0223  | 0.0170  | 1.7854       | 0.0314  | 0.0313       | 0.0214  | 0.1688       | 0.1232       | 0.2113       | 0.0018  |

3326

•

#### NOTES:

J: Estimated amount detected between detection limit and reporting limit EMPC: Estimated maximum possible concentration due to ion raio failure

|    | Bore                      | hole $\rightarrow$ | E11-186      | E11-186      | E11-186      | E11-186      | E11-187      | E11-187      | E11-187     | E11-187 | E11-188    | E11-188      |
|----|---------------------------|--------------------|--------------|--------------|--------------|--------------|--------------|--------------|-------------|---------|------------|--------------|
| No | Samp                      | ie ID →            | S1           | S2           | 53           | S4           | S1           | S2           | S3          | S4      | S1         | S2           |
|    | Analyte J Dept            | h, m →             | 0.0~0.5      | ~2.0         | ~5.0         | ~8.0         | 0.0~0.5      | ~2,0         | ~5.0        | ~10.0   | 0.0~0.5    | ~2.0         |
| 1  | 2,3,7,8-TCDD p            | g/g                | 0.163 / EMPC | ND           | NÐ           | ND           | ND           | ND           | ND          | ND      | ND         | ND           |
| 2  | 1,2,3,7,8-PeCDD p         | g/g                | 0.355 J EMPC | 0,172 J      | 0.085 J EMPC | ND           | ND           | ND           | ND          | ND      | ND         | ND           |
| 3  | 1,2,3,4,7,8-HxCDD p       | g/g                | 0.18 J EMPC  | 0.166 J EMPC | ND           | ND           | NĎ           | ND           | NÐ          | ND      | ND         | NÐ           |
| 4  | 1,2,3,6,7,8-HxCDD p       | g/g                | 0.336 (      | 0,182 J      | ND           | ND           | ND           | NĎ           | ND          | ND      | NÐ         | 0.352 J      |
| 5  | 1,2,3,7,8,9-HxCDD p       | g/g                | 0.252 J      | 0,135 J EMPC | ND           | ND           | ND           | NĎ           | ND          | ND      | ND         | ND           |
| 6  | 1,2,3,4,6,7,8-HpCDD p     | 3/g                | 3.81         | 1.54 j       | 0.522 J      | 0.352 J EMPC | 1.27 J EMPC  | 2.48 J       | 0.752 J     | 0.596 J | 4.18 EMPC  | 8.16         |
| 7  | OCDD p                    | g/g                | 54.1         | 32.8         | 19.2         | 9.75 EMPC    | 23.6         | 49.1         | 26.9        | 11.9    | 80,4       | 99,3         |
| 8  | 2,3,7,8-TCDF p(           | s/g                | NÐ           | ND           | ND           | ND           | ND           | ND           | NÐ          | ND      | ND         | NĎ           |
| 9  | 1,2,3,7,8-PeCDF p{        | s/s                | ND           | ND           | ND           | ND           | ND           | 0.248 J      | ND          | ND      | 0.185 J    | 0.502 J      |
| 10 | 2,3,4,7,8-PeCDF pf        | s/g                | ND           | ND           | ND           | ND           | ND           | 0,194 J      | 0.129 JEMPC | ND      | NÐ         | 0.261 J EMPO |
| 11 | 1,2,3,4,7,8-HxCDF pg      | s/g                | ND           | ND           | ND           | ND           | NÐ           | 0.476 JEMPC  | ND          | ND      | ND         | 1.03 J       |
| 12 | 1,2,3,6,7,8-HxCDF pf      | s/g                | ND           | ND           | ND           | ND           | ND           | 0.285 J EMPC | ND          | NÐ      | ND         | 0,433 J EMPO |
| 13 | 1,2,3,7,8,9-HxCDF pg      | s/g                | 0.19 J       | ND           | ND           | ND           | ND           | ND           | ND          | ND      | ND         | ND           |
| 14 | 2,3,4,6,7,8-HxCDF pg      | /g                 | 0,853 J      | 0.126 JEMPC  | ND           | ND           | ND           | ND           | ND          | ND      | 0.265 1    | D.386 J      |
| 15 | 1,2,3,4,6,7,8-HpCDF pg    | /g                 | 2.01 J       | NÐ           | ND           | ND           | 0.611 J EMPC | 2,07 J       | ND          | ND      | 1.74 JEMPC | 3,57         |
| 16 | 1,2,3,4,7,8,9-HpCDF pg    | /g                 | 0.367 J EMPC | ND           | ND           | ND           | ND           | ND           | ND          | ND      | ND         | 0.95 J EMPC  |
| 17 | OCDF pg                   | /g                 | 4.06 J       | 1.45 J       | ND           | ND           | 1.48 J       | 4.12 J       | 0.746 J     | ND      | 3.8 J      | 12.6         |
|    |                           |                    |              |              |              |              |              |              |             |         |            |              |
|    | WHO-2005 TEQ (ND=0), pg/g |                    | 0.7284       | 0.2586       | 0.0964       | 0.0064       | 0.0263       | 0.2032       | 0.0545      | 0.0095  | 0.1165     | 0.4738       |

# NOTES:

I: Estimated amount detected between detection limit and reporting limit

EMPC: Estimated maximum possible concentration due to ion raio failure

3327

|    |                      | Borehole $\rightarrow$ | E11-188 | E11-188      | E11-189      | E11-189      | E11-189 | E11-189 | E11-190   | E11-190   | E11-190      | E11-190     |
|----|----------------------|------------------------|---------|--------------|--------------|--------------|---------|---------|-----------|-----------|--------------|-------------|
| No |                      | Sample ID $ ightarrow$ | S3      | S4           | S1           | S2           | S3      | S4      | <b>S1</b> | <b>S2</b> | S3           | <u>\$</u> 4 |
|    | Analyte↓             | Depth, m $\rightarrow$ | ~5.0    | ~9.6         | 0.0~0.5      | ~2.0         | ~5,0    | ~10.0   | 0.0~0.5   | ~2.0      | ~5,0         | ~10,0       |
| 1  | 2,3,7,8-TCDD         | pg/g                   | ND      | NÐ           | 0.174 J EMPC | ND           | ND      | ND      | ND        | ND        | ND           | ND          |
| 2  | 1,2,3,7,8-PeCDD      | pg/g                   | ND      | ND           | ND           | ND           | ND      | NÐ      | ND        | ND        | ND           | ND          |
| 3  | 1,2,3,4,7,8-HxCDD    | pg/g                   | ND      | ND           | ND           | ND           | ND      | ND      | NÐ        | ND        | ND .         | ND          |
| 4  | 1,2,3,6,7,8-HxCDD    | pg/g                   | ND      | ND           | ND           | ND           | NÐ      | ND      | ND        | NÐ        | ND           | ND          |
| 5  | 1,2,3,7,8,9-HxCDD    | pg/g                   | ND      | ND           | ND           | ND           | ND      | ND      | ND        | ND        | ND           | ND          |
| 6  | 1,2,3,4,6,7,8-HpCDD  | pg/g                   | 0.441 J | 0.346 J EMPC | 1,69 J       | 1.18 J       | ND      | ND      | 0.274 J   | 0.511 J   | 0.686 J EMPC | ND          |
| 7  | OCDD                 | pg/g                   | 21,9    | 8.38         | 47.6         | 23           | 28.1    | 16.6    | 8,13      | 17.5      | 16.5         | ND          |
| 8  | 2,3,7,8-TCDF         | pg/g                   | ND      | ND           | ND           | ND           | ND      | ND      | ND        | ND        | ND           | ND          |
| 9  | 1,2,3,7,8-PeCDF      | pg/g                   | ND      | ND           | 0.276 J.EMPC | 0.293 J EMPC | ND      | ND      | ND        | ND        | ND           | ND          |
| 10 | 2,3,4,7,8-PeCDF      | pg/g                   | ND      | ND           | 0.145 J EMPC | 0.194 J EMPC | ND      | ND      | ND        | ND        | ND           | ND          |
| 11 | 1,2,3,4,7,8-HxCDF    | pg/g                   | ND      | ND           | 0.477 J EMPC | 0,398 3      | ND      | ND      | NÐ        | ND        | ND           | ND          |
| 12 | 1,2,3,6,7,8-HxCDF    | pg/g                   | ND      | ND           | 0.268 J EMPC | 0.23 J       | ND      | ND      | ND        | ND        | ND           | NÐ          |
| 13 | 1,2,3,7,8,9-HxCDF    | pg/g                   | ND      | ND           | ND           | NÐ           | ND      | NÐ      | ND        | ND        | NÐ           | ND          |
| 14 | 2,3,4,6,7,8-HxCDF    | pg/g                   | ND      | ND           | NÐ           | ND           | ND      | ND      | ND        | ND        | ND           | ND          |
| 15 | 1,2,3,4,6,7,8-HpCDF  | pg/g                   | ND      | ND           | 1.7 j        | 1.39 J EMPC  | ND      | ND      | ND        | ND        | ND           | ND          |
| 16 | 1,2,3,4,7,8,9-HpCDF  | pg/g                   | NÐ      | ND           | 0,301 ) EMPC | ND           | NÐ      | ND      | ND        | ND        | ND           | ND          |
| 17 | OCDF                 | pg/g                   | ND      | ND           | 2,72 J       | 1,9 J        | ND      | ND      | ND        | ND        | 0.397 J      | ND          |
|    |                      |                        |         |              |              |              |         |         |           |           |              |             |
|    | WHO-2005 TEQ (ND=0), | pg/g                   | 0.0110  | 0.0060       | 0.3523       | 0.1630       | 0.0084  | 0.0050  | 0.0052    | 0.0104    | 0.0119       | 0.0000      |

#### NOTES:

 $J_{\mathbb{C}}$  Estimated amount detected between detection limit and reporting limit

EMPC: Estimated maximum possible concentration due to ion raio failure

ND: Not detected

|    | Во                       | orehole →             | E11-191      | E11-191    | E11-191      | E11-191    | E11-192 | E11-192      | E11-192 | E11-192      | E11-193     | E11-193      |
|----|--------------------------|-----------------------|--------------|------------|--------------|------------|---------|--------------|---------|--------------|-------------|--------------|
| No | San                      | nple ID $\rightarrow$ | S1           | 52         | \$3          | <b>S</b> 4 | S1      | 52           | 53      | S4           | S1          | S2           |
|    | Analyte↓ De              | pth, m $\rightarrow$  | 0.0~0.5      | ~2,0       | ~5.0         | ~7.7       | 0.0~0.5 | ~2.0         | ~5.0    | ~10.0        | 0.0~0.5     | ~2.0         |
| 1  | 2,3,7,8-TCDD             | pg/g                  | 0.236 J EMPC | NÐ         | 0.272 J EMPC | ND         | ND      | ND           | ND      | ND           | ND          | ND           |
| 2  | 1,2,3,7,8-PeCDD          | pg/g                  | ND           | ND         | 0.389 J EMPC | ND         | ND      | ND           | NÐ      | ND           | ND          | 0.093 J EMPO |
| 3  | 1,2,3,4,7,8-HxCDD        | pg/g                  | ND           | ND         | 0.353 JEMPC  | ND         | ND      | ND           | ND      | NÐ           | ND          | ND           |
| 4  | 1,2,3,6,7,8-HxCDD        | pg/g                  | ND           | ND         | 0,491 J      | ND         | ND      | NÐ           | ND      | ND           | ND          | ND           |
| 5  | 1,2,3,7,8,9-HxCDD        | pg/g                  | ND           | ND         | 0.599 J EMPC | ND         | ND      | ND           | ND      | ND           | ND          | ND           |
| 6  | 1,2,3,4,6,7,8-HpCDD      | pg/g                  | 0.535 J EMPC | 1.64 J     | 0.787 J      | ND         | 0.716 J | 0.247 J      | ND      | 0.659 J      | 0.92 J EMPC | 0.605 J      |
| 7  | OCDD                     | pg/g                  | 14,9         | 30,2       | 1.9 J EMPC   | ND         | 15.7    | 10.3         | 22.7    | 16.1         | 20.7        | 20,2         |
| 8  | 2,3,7,8-TCDF             | pg/g                  | ND           | ND         | ND           | 0.483 J    | ND      | NÐ           | ND      | ND           | ND          | ND           |
| 9  | 1,2,3,7,8-PeCDF          | pg/g                  | ND           | ND         | 0,593 J EMPC | ND         | ND      | ND           | ND      | ND           | ND          | 0.076 3      |
| 10 | 2,3,4,7,8-PeCDF          | pg/g                  | ND           | ND         | ND           | ND         | 0,113 J | 0.077 J EMPC | ND      | 0,085 )      | 0.103 J     | 0.102 J EMPC |
| 11 | 1,2,3,4,7,8-HxCDF        | pg/g                  | ND           | 0.12 JEMPC | 0,421 J      | NÐ         | ND      | ND           | ND      | ND           | 0.088 J     | ND           |
| 12 | 1,2,3,6,7,8-HxCDF        | pg/g                  | ND           | 0.092 J    | 0.455 J      | ND         | ND      | NÐ           | ND      | ND           | ND          | ND           |
| 13 | 1,2,3,7,8,9-HxCDF        | pg/g                  | ND           | ND         | 0.451 J      | ND         | 0,156 / | ND           | ND      | ND           | ND          | ND           |
| 14 | 2,3,4,6,7,8-HxCDF        | pg/g                  | ND           | -0.09 J    | 0.379 )      | ND         | 0,139 J | ND           | NO      | ND           | NÐ          | ND           |
| 15 | 1,2,3,4,6,7,8-HpCDF      | pg/g                  | ND           | 0.93 J     | ND           | ND         | ND      | 0.104 J      | ND      | 0.206 J      | NÐ          | ND           |
| 16 | 1,2,3,4,7,8,9-HpCDF      | pg/g                  | ND           | ND         | 0.543 J      | ND         | ND      | ND           | ND      | ND           | ND          | ND           |
| 17 | OCDF                     | pg/g                  | ND           | 1,66 J     | 1.31 J EMPC  | ND         | ND      | ND           | ND      | 0.502 J EMPC | 0.382 J     | ND           |
|    |                          |                       |              |            |              |            |         |              |         |              |             |              |
|    | WHO-2005 TEQ (ND=0), pg, | /g                    | 0.2458       | 0.0654     | 1.0062       | 0.0483     | 0.0753  | 0.0298       | 0.0068  | 0.0390       | 0.0552      | 0.1383       |

.

# NOTES:

J: Estimated amount detected between detection limit and reporting limit

EMPC: Estimated maximum possible concentration due to ion raio failure

ND: Not detected

3329

|    | Bor                      | ehole →              | E11-193      | E11-193     | E11-194 | E11-194      | E11-194 | E11-194      | E11-195      | E11-195      | E11-195 | E11-195 |
|----|--------------------------|----------------------|--------------|-------------|---------|--------------|---------|--------------|--------------|--------------|---------|---------|
| No | Sam                      | ple ID →             | S3           | S4          | S1      | S2           | S3      | S4           | \$1          | S2           | S3      | S4      |
|    | Analyte↓ Dep             | ith, m $\rightarrow$ | ~5.0         | ~8,6        | 0,3~0.8 | ~2.0         | ~5.0    | ~10.0        | 0.3~0.8      | ~2.0         | ~5.0    | ~10.0   |
| 1  | 2,3,7,8-TCDD             | og/g                 | 0.174 J EMPC | ND          | ND      | ND           | NÐ      | ND           | 0.192 J EMPC | ND           | ND      | ND      |
| 2  | 1,2,3,7,8-PeCDD p        | og/g                 | ND           | ND          | ND      | ND           | ND      | ND           | ND           | ND           | ND      | ND      |
| 3  | 1,2,3,4,7,8-HxCDD ;      | og/g                 | ND           | ND          | ND      | ND           | ND      | ND           | ND           | ND           | ND      | ND      |
| 4  | 1,2,3,6,7,8-HxCDD        | og/g                 | ND           | ND          | ND      | ND           | ND      | ND           | ND           | ND           | NÐ      | ND      |
| 5  | 1,2,3,7,8,9-HxCDD p      | og/g                 | ND           | ND          | ND      | ND           | ND      | ND           | ND           | ND           | ND      | ND      |
| 6  | 1,2,3,4,6,7,8-HpCDD p    | og/g                 | ND           | 1.39 J EMPC | 19.7    | ND           | ND      | NÐ           | 0.741 J      | 0,803 J EMPC | 24.3    | 15.3    |
| 7  | OCDD F                   | og∕g                 | 4.37 JEMPC   | 7,18        | 146     | 1.89 J       | ND      | 1.05 J EMPC  | 26           | 43           | 1960    | 1300    |
| 8  | 2,3,7,8-TCDF p           | og/g                 | ND           | ND          | ND      | -0.451 J     | 0.25 J  | 0.372 J EMPC | 0,236 J      | NÐ           | ND      | ND      |
| 9  | 1,2,3,7,8-PeCDF p        | og/g                 | 0.137 J      | ND          | ND      | 0.101 J EMPC | ND      | NÐ           | 0.204 J EMPC | ND           | ND      | ND      |
| 10 | 2,3,4,7,8-PeCDF p        | og/g                 | 0.151 J EMPC | ND          | ND      | 0,126 J      | ND      | ND           | 0.168 J EMPC | ND           | ND      | NÐ      |
| 11 | 1,2,3,4,7,8-HxCDF p      | og/g                 | 0.4 JEMPC    | ND          | ND      | ND           | ND      | ND           | ND           | ND           | ND      | ND      |
| 12 | 1,2,3,6,7,8-HxCDF p      | og/g                 | 0.314 J EMPC | NÐ          | ND      | ND           | ND      | NÐ           | ND           | ND           | NÐ      | ND      |
| 13 | 1,2,3,7,8,9-HxCDF p      | g/g                  | ND           | ND          | ND      | NÐ           | ND      | ND           | 0.171 J EMPC | ND           | ND      | ND      |
| 14 | 2,3,4,6,7,8-HxCDF p      | e/g                  | 0.174 J EMPC | 0,751 J     | ND      | ND           | NÐ      | ND           | ND           | ND           | NĎ      | ND      |
| 15 | 1,2,3,4,6,7,8-HpCDF p    | g/g                  | 2.01 J       | 1.39 J EMPC | 4.03    | 0.144 J      | ND      | ND           | 0,305 J      | ND           | ND      | ND      |
| 16 | 1,2,3,4,7,8,9-HpCDF p    | g/g                  | 0.281 J      | ND          | NÐ      | ND           | ND      | NÐ           | ND           | ND           | ND      | ND      |
| 17 | OCDF p                   | g/g                  | 1,34 J       | ND          | 10.9    | ND           | ND      | ND           | ND           | ND           | ND      | ND      |
|    |                          |                      |              |             |         |              |         |              |              |              |         |         |
|    | WHO-2005 TEQ (ND≈0), pg/ | g                    | 0.3368       | 0.1051      | 0.2844  | 0.0879       | 0.0250  | 0.0375       | 0.3075       | 0.0209       | 0.8310  | 0.5430  |

# NOTES:

J: Estimated amount detected between detection limit and reporting limit

EMPC: Estimated maximum possible concentration due to ion raio failure

ND: Not detected

3330

ţ.

|    |                     | Borehole →             | E11-196     | E11-196      | E11-196      | E11-196 |
|----|---------------------|------------------------|-------------|--------------|--------------|---------|
| No |                     | Sample ID →            | \$ <b>1</b> | \$2          | S3           | S4      |
|    | Analyte↓            | Depth, m $\rightarrow$ | 0.3~0.8     | ~2.3         | ~5.3         | ~10.3   |
| 1  | 2,3,7,8-TCDD        | pg/g                   | ND          | ND           | ND           | NÐ      |
| 2  | 1,2,3,7,8-PeCDD     | pg/g                   | ND          | ND           | ND           | ND      |
| 3  | 1,2,3,4,7,8-HxCDD   | pg/g                   | ND          | ND           | NÐ           | ND      |
| 4  | 1,2,3,6,7,8-HxCDD   | pg/g                   | ND          | NÐ           | ND           | ND      |
| 5  | 1,2,3,7,8,9-HxCDD   | pg/g                   | ND          | ND           | ND           | ND      |
| 6  | 1,2,3,4,6,7,8-HpCDD | pg/g                   | 2.39 J      | 0.817 J EMPC | ND           | ND      |
| 7  | OCDD                | pg/g                   | 59.4        | 19,3         | 5.11 J EMPC  | 1.34 J  |
| 8  | 2,3,7,8-TCDF        | pg/g                   | 0,384 J     | 0.503        | 0.327 J EMPC | 0.503 J |
| 9  | 1,2,3,7,8-PeCDF     | pg/g                   | 0.161 J     | ND           | ND           | ND      |
| 10 | 2,3,4,7,8-PeCDF     | pg/g                   | ND          | ND           | ND           | ND      |
| 11 | 1,2,3,4,7,8-HxCDF   | pg/g                   | ND          | ND           | ND           | ND      |
| 12 | 1,2,3,6,7,8-HxCDF   | pg/g                   | ND          | ND           | ND           | ND      |
| 13 | 1,2,3,7,8,9-HxCDF   | pg/g                   | ND          | ND           | ND           | ND      |
| 14 | 2,3,4,6,7,8-HxCDF   | pg/g                   | ND          | ND           | ND           | ND      |
| 15 | 1,2,3,4,6,7,8-HpCDF | pg/g                   | 0.248 J     | 0.273 J      | ND           | ND      |
| 16 | 1,2,3,4,7,8,9-HpCDF | pg/g                   | ND          | ND           | ND           | ND      |
| 17 | OCDF                | pg/g                   | ND          | ND           | ND           | ND      |

#### NOTES:

J: Estimated amount detected between detection limit and reporting limit EMPC: Estimated maximum possible concentration due to ion raio failure ND: Not detected

3331

÷

|    |                   | Borehole →  | E11-154 | E11-154 | E11-155   | E11-155 | E11-156 | E11-156 | E11-156 | E11-157   | E11-157 | E11-157     |
|----|-------------------|-------------|---------|---------|-----------|---------|---------|---------|---------|-----------|---------|-------------|
| No |                   | Sample ID → | S1      | S2      | <b>S1</b> | S2      | \$1     | S2      | S3      | <b>S1</b> | S2      | S3          |
|    | Analyte↓          | Depth, m 🔿  | 0.0~0.5 | ~2,3    | 0.0~0.5   | ~1.8    | 0.0~0.5 | ~2.0    | ~6,45   | 0.0~0.5   | ~2.0    | <b>~4.5</b> |
| 1  | 2,4,5-T           | mg/kg       | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND        | ND      | ND          |
| 2  | 2,4,5-TP (Silvex) | mg/kg       | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND        | ND      | ND          |
| 3  | 2,4-D             | mg/kg       | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND        | ND      | ND          |
| 4  | 2,4-DB            | mg/kg       | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND        | ND      | ND          |
| 5  | Dicamba           | mg/kg       | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND        | ND      | ND          |

# Table 4. Summary of Chlorinated Herbicide Results for Phase II and IIb Soil Samples

NOTES:

R: Data rejected ND: Not detected

----

| No |                   | Borehole →  | E11-158 | E11-158 | E11-158 | E11-158   | E11-159   | E11-159 | E11-159 | E11-159 | E11-160    | E11-160 |
|----|-------------------|-------------|---------|---------|---------|-----------|-----------|---------|---------|---------|------------|---------|
|    |                   | Sample ID → | S1      | S2      | S3      | <b>S4</b> | <b>S1</b> | S2      | \$3     | S4      | <b>S</b> 1 | S2      |
|    | Analyte↓          | Depth, m →  | 0.0~0.5 | ~2.0    | ~5.0    | ~8.5      | 0.0~0.5   | ~2.0    | ~5.0    | ~10.0   | 0.0~0.5    | ~2.0    |
| 1  | 2,4,5-T           | mg/kg       | ND      | ND      | ND      | ND        | NÐ        | ND      | ND      | ND      | ND         | ND      |
| 2  | 2,4,5-TP (Silvex) | mg/kg       | ND      | ND      | ND      | ND        | ND        | ND      | ND      | ND      | ND         | ND      |
| 3  | 2,4-D             | mg/kg       | ND      | ND      | ND      | ND        | ND        | ND      | ND      | ND      | ND         | ND      |
| 4  | 2,4-DB            | mg/kg       | ND      | ND      | ND      | ND        | ND        | ND      | ND      | ND      | ND         | ND      |
| 5  | Dicamba           | mg/kg       | ND      | ND      | ND      | ND        | NÐ        | ND      | ND      | ND      | ND         | ND      |

. .

: . .

4

NOTES:

R: Data rejected ND: Not detected

|       |                   | Borehole -> | E11-160 | E11-161 | E11-161 | E11-161 | E11-161     | E11-162 | E11-162    | E11-163 | E11-163    | E11-163 |
|-------|-------------------|-------------|---------|---------|---------|---------|-------------|---------|------------|---------|------------|---------|
| No    |                   | Sample ID → | S3      | \$1     | S2      | \$3     | <b>\$</b> 4 | S1      | <b>S</b> 2 | S1      | <b>S</b> 2 | S3      |
| -0403 | Analyte↓          | Depth, m →  | ~3,4    | 0.0~0.5 | ~2.0    | ~5,0    | ~7.9        | 0.0~0.5 | ~1.52      | 0,0~0.5 | ~2,0       | ~5.0    |
| 1     | 2,4,5-T           | mg/kg       | ND      | ND      | ND      | ND      | ND          | ND      | ND         | ND      | ND         | ND      |
| 2     | 2,4,5-TP (Silvex) | mg/kg       | NÐ      | ND      | ND      | ND      | ND          | ND      | ND         | ND      | ND         | ND      |
| 3     | 2,4-D             | mg/kg       | ND      | ND      | ND      | ND      | ND          | ND      | ND         | ND      | ND         | ND      |
| 4     | 2,4-DB            | mg/kg       | ND      | ND      | NÐ      | ND      | ND          | ND      | ND         | ND      | ND         | ND      |
| 5     | Dicamba           | mg/kg       | ND      | ND      | ND      | ND      | ND          | NÐ      | ND         | ND      | ND         | ND      |

NOTES:

R: Data rejected ND: Not detected

3334

|    |                   | Borehole →              | E11-163 | E11-164   | E11-164 | E11-164 | E11-164   | E11-165 | E11-165 | E11-165 | E11-165 | E11-166 |
|----|-------------------|-------------------------|---------|-----------|---------|---------|-----------|---------|---------|---------|---------|---------|
| No |                   | Sample ID $\rightarrow$ | S4      | <b>S1</b> | 52      | S3      | <b>S4</b> | \$1     | 52      | S3      | S4      | S1      |
|    | Analyte↓          | Depth, m →              | ~10.0   | 0.0~0.5   | ~2.0    | ~5.0    | ~11.0     | 0.0~0.5 | ~2.0    | ~5.0    | ~10.0   | 0.3~0.8 |
| 1  | 2,4,5-T           | mg/kg                   | ND      | ND        | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      |
| 2  | 2,4,5-TP (Silvex) | mg/kg                   | ND      | ND        | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      |
| 3  | 2,4-D             | mg/kg                   | ND      | ND        | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      |
| 4  | 2,4-DB            | mg/kg                   | ND      | ND        | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      |
| 5  | Dicamba           | mg/kg                   | ND      | ND        | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      |

•

•

. . . .

÷

1

NOTES:

R: Data rejected ND: Not detected

|    |                   | Borehole →              | E11-166 | E11-167 | E11-167 | E11-167 | E11-168 | E11-168 | E11-169 | E11-169     | E11-170   | E11-170 |
|----|-------------------|-------------------------|---------|---------|---------|---------|---------|---------|---------|-------------|-----------|---------|
| No |                   | Sample ID $\rightarrow$ | S2      | S1      | S2      | S3      | S1      | S2      | Si      | S2          | <b>S1</b> | S2      |
|    | Analyte↓          | Depth, m →              | ~2.7    | 0.0~0.5 | ~2.0    | ~5.5    | 0.0~0.5 | ~3.0    | 0.0~0.5 | <b>^1.8</b> | 0.0~0.5   | ~2.0    |
| 1  | 2,4,5-T           | mg/kg                   | ND      | ND      | NĎ      | ND      | ND      | ND      | ND      | ND          | ND        | ND      |
| 2  | 2,4,5-TP (Silvex) | mg/kg                   | ND          | ND        | ND      |
| 3  | 2,4-D             | mg/kg                   | ND          | ND        | ND      |
| 4  | 2,4-DB            | mg/kg                   | ND          | ND        | ND      |
| 5  | Dicamba           | mg/kg                   | ND          | ND        | ND      |

•

κ.

ч,

٥ų-

NOTES:

R: Data rejected ND: Not detected

|    |                   | Borehole →  | E11-170 | E11-170 | E11-171 | E11-171 | E11-171 | E11-172 | E11-172 | E11-172 | E11-172    | E11-173 |
|----|-------------------|-------------|---------|---------|---------|---------|---------|---------|---------|---------|------------|---------|
| No |                   | Sample ID → | S3      | S4      | S1      | S2      | 53      | S1      | S2      | S3      | <u>\$4</u> | \$1     |
|    | Analyte J         | Depth, m →  | ~5.0    | ~7.5    | 0.0~0.5 | ~2.0    | ~6.5    | 0.0~0.5 | ~2,0    | ~5.0    | ~8.7       | 0.0~0.5 |
| 1  | 2,4,5-T           | mg/kg       | ND         | ND      |
| 2  | 2,4,5-TP (Silvex) | mg/kg       | ND         | ND      |
| 3  | 2,4-D             | mg/kg       | ND      | NÐ      | ND         | ND      |
| 4  | 2,4-DB            | mg/kg       | ND         | ND      |
| 5  | Dicamba           | mg/kg       | ND         | ND      |

....

.

•

-

NOTES:

R: Data rejected ND: Not detected

|       | 114-2 Market      | Borehole →              | E11-173 | E11-173 | E11-173 | E11-174 | E11-174   | E11-174 | E11-174 | E11-175 | E11-175 | E11-175 |
|-------|-------------------|-------------------------|---------|---------|---------|---------|-----------|---------|---------|---------|---------|---------|
| No    |                   | Sample ID $\rightarrow$ | S2      | S3      | S4      | S1      | <b>S2</b> | S3      | S4      | S1      | S2      | \$3     |
| -10.1 | Analyte↓          | Depth, m →              | ~2.0    | ~5.0    | ~10.0   | 0.3~0,8 | ~2,3      | 2.3~5.3 | ~8.9    | 0.0~0.5 | ~2.0    | ~5.0    |
| 1     | 2,4,5-T           | mg/kg                   | ND      | ND      | ND      | ND      | ND R      | ND      | ND      | ND      | ND      | ND      |
| 2     | 2,4,5-TP (Silvex) | mg/kg                   | ND      | ND      | ND      | ND      | ND        | NÐ      | ND      | ND      | ND      | ND      |
| 3     | 2,4-D             | mg/kg                   | ND      | ND      | ND      | ND      | ND        | ND      | ND      | ND      | NÐ      | ND      |
| 4     | 2,4-DB            | mg/kg                   | ND      | ND      | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      |
| 5     | Dicamba           | mg/kg                   | ND      | ND      | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      |

NOTES:

R: Data rejected ND: Not detected

|    |                   | Borehole →              | E11-175 | E11-176 | E11-176 | E11-176 | E11-176 | E11-177 | E11-177 | E11-177   | E11-177 | E11-178 |
|----|-------------------|-------------------------|---------|---------|---------|---------|---------|---------|---------|-----------|---------|---------|
| No |                   | Sample ID $\rightarrow$ | S4      | S1      | S2      | S3      | S4      | S1      | S2      | <b>S3</b> | S4      | S1      |
|    | Analyte↓          | Depth, m →              | ~7.25   | 0.0~0.5 | ~2.0    | ~5.0    | ~10.0   | 0.4~0.9 | ~2,4    | ~5.4      | ~9.0    | 0.0~0.5 |
| 1  | 2,4,5-T           | mg/kg                   | ND      | NÐ      | ND      | ND      | ND      | ND      | ND      | ND        | ND      | ND      |
| 2  | 2,4,5-TP (Silvex) | mg/kg                   | ND        | ND      | ND      |
| 3  | 2,4-D             | mg/kg                   | ND        | ND      | ND      |
| 4  | 2,4-DB            | mg/kg                   | ND        | ND      | ND      |
| 5  | Dicamba           | mg/kg                   | ND        | ND      | ND      |

NOTES:

R: Data rejected ND: Not detected

3339

¥

|    | , higheil bhach agus ai | Borehole 🤿             | E11-178 | E11-178 | E11-178 | E11-179 | E11-179 | E11-179 | E11-179 | E11-180 | E11-180 | E11-180 |
|----|-------------------------|------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| No |                         | Sample ID →            | S2      | 53      | S4      | S1      | S2      | \$3     | S4      | \$1     | S2      | S3      |
|    | Analyte↓                | Depth, m $\rightarrow$ | ~2,0    | ~5.0    | ~10.0   | 0.0~0.5 | ~2.0    | ~5.0    | ~10.0   | 0,0~0.5 | ~2,0    | ~5.0    |
| 1  | 2,4,5-T                 | mg/kg                  | ND      |
| 2  | 2,4,5-TP (Silvex)       | mg/kg                  | ND      |
| 3  | 2,4-D                   | mg/kg                  | ND      | NÐ      | ND      |
| 4  | 2,4-DB                  | mg/kg                  | ND      |
| 5  | Dicamba                 | mg/kg                  | ND      |

· · · · ·

NOTES:

R: Data rejected ND: Not detected

3340

.

|        |                   | Borehole →              | E11-180 | E11-181 | E11~181 | E11-181 | E11-182 | E11-182 | E11-182 | E11-182   | E11-183    | E11-183 |
|--------|-------------------|-------------------------|---------|---------|---------|---------|---------|---------|---------|-----------|------------|---------|
| No     |                   | Sample ID $\rightarrow$ | S4      | S1      | S2      | S3      | S1      | S2      | S3      | <b>S4</b> | <b>\$1</b> | S2      |
| 100000 | Analyte↓          | Depth, m →              | ~10.0   | 0,0~0,5 | ~2.0    | ~5.0    | 0.0~0.5 | ~2.0    | ~5.0    | ~10,0     | 0.0~0.5    | ~2.0    |
| 1      | 2,4,5-T           | mg/kg                   | ND        | ND         | NÐ      |
| 2      | 2,4,5-TP (Silvex) | mg/kg                   | ND        | ND         | ND      |
| 3      | 2,4-D             | mg/kg                   | ND        | ND         | ND      |
| 4      | 2,4-DB            | mg/kg                   | ND        | ND         | ND      |
| 5      | Dicamba           | mg/kg                   | ND        | ND         | ND      |

## NOTES:

R: Data rejected ND: Not detected

|    |                   | Borehole →              | E11-183 | E11-183    | E11-184   | E11-184 | E11-184 | E11-184 | E11-185 | E11-185 | E11-185 | E11-185 |
|----|-------------------|-------------------------|---------|------------|-----------|---------|---------|---------|---------|---------|---------|---------|
| No |                   | Sample ID $\rightarrow$ | S3      | <b>S</b> 4 | <b>S1</b> | S2      | S3      | S4      | S1      | S2      | S3      | S4      |
|    | Analyte↓          | Depth, m 🔿              | ~5.0    | ~10,0      | 0.0~0.5   | ~2.0    | ~5.0    | ~8.75   | 0.0~0.5 | ~2.0    | ~5.0    | ~8.8    |
| 1  | 2,4,5-ĭ           | mg/kg                   | ND      | ND         | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 2  | 2,4,5-TP (Silvex) | mg/kg                   | ND      | ND         | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 3  | 2,4-D             | mg/kg                   | ND      | ND         | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 4  | 2,4-DB            | mg/kg                   | ND      | NÐ         | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 5  | Dicamba           | mg/kg                   | ND      | ND         | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND      |

NOTES:

R: Data rejected ND: Not detected

3342

|    |                   | Borehole -> | E11-186 | E11-186 | E11-186 | E11-186 | E11-187   | E11-187 | E11-187 | E11-187    | E11-188 | E11-188 |
|----|-------------------|-------------|---------|---------|---------|---------|-----------|---------|---------|------------|---------|---------|
| No |                   | Sample ID 🤿 | S1      | 52      | 53      | S4      | <b>S1</b> | S2      | \$3     | <b>\$4</b> | 51      | S2      |
|    | Analyte↓          | Depth, m →  | 0.0~0.5 | ~2.0    | ~5.0    | ~8.0    | 0.0~0.5   | ~2.0    | ~5.0    | ~10.0      | 0.0~0.5 | ~2.0    |
| 1  | 2,4,5-T           | mg/kg       | ND      | ND      | ND      | ND      | ND        | ND      | ND      | ND         | ND      | ND      |
| 2  | 2,4,5-TP (Silvex) | mg/kg       | ND      | ND      | ND      | ND      | ND        | ND      | ND      | ND R       | ND      | ND      |
| 3  | 2,4-D             | mg/kg       | NÐ      | ND      | ND      | ND      | ND        | ND      | ND      | ND         | ND      | ND      |
| 4  | 2,4-DB            | mg/kg       | ND      | ND      | ND      | ND      | ND        | ND      | ND      | ND R       | ND      | ND      |
| 5  | Dicamba           | mg/kg       | ND      | ND      | ND      | ND      | ND        | ND      | ND      | ND         | ND      | ND      |

NOTES:

R: Data rejected ND: Not detected

3343

|    |                   | Borehole 🔿   | E11-188 | E11-188 | E11-189   | E11-189 | E11-189 | E11-189 | E11-190 | E11-190 | E11-190 | E11-190    |
|----|-------------------|--------------|---------|---------|-----------|---------|---------|---------|---------|---------|---------|------------|
| No |                   | Sample ID -> | S3      | S4      | <b>S1</b> | \$2     | \$3     | S4      | S1      | \$2     | \$3     | <b>\$4</b> |
|    | Analyte↓          | Depth, m →   | ~5.0    | ~9.6    | 0,0~0.5   | ~2,0    | ~5,0    | ~1.0.0  | 0.0~0.5 | ~2.0    | ~5.0    | ~10,0      |
| 1  | 2,4,5-T           | mg/kg        | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND         |
| 2  | 2,4,5-TP (Silvex) | mg/kg        | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND         |
| 3  | 2,4-D             | mg/kg        | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND         |
| 4  | 2,4-DB            | mg/kg        | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND         |
| 5  | Dicamba           | mg/kg        | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND         |

÷

NOTES:

R: Data rejected ND: Not detected

3344

|          |                   | Borehole 🔿  | E11-191 | E11-191 | E11-191 | E11-191 | E11-192 | E11-192 | E11-192 | E11-192 | E11-193   | E11-193 |
|----------|-------------------|-------------|---------|---------|---------|---------|---------|---------|---------|---------|-----------|---------|
| No       |                   | Sample ID → | S1      | S2      | S3      | S4      | Si      | 52      | S3      | S4      | <b>S1</b> | S2      |
| aler A à | Analyte↓          | Depth, m 🔿  | 0.0~0.5 | ~2.0    | ~5.0    | ~7.7    | 0.0~0.5 | ~2,0    | ~5.0    | ~10.0   | 0.0~0.5   | ~2.0    |
| 1        | 2,4,5-T           | mg/kg       | ND      | ND      | ND      | NÐ      | NÐ      | ND      | ND      | ND      | ND        | ND      |
| 2        | 2,4,5-TP (Silvex) | mg/kg       | ND        | ND      |
| 3        | 2,4-D             | mg/kg       | ND        | ND      |
| 4        | 2,4-DB            | mg/kg       | ND        | ND      |
| 5        | Dicamba           | mg/kg       | ND        | ND      |

NOTES:

R: Data rejected ND: Not detected

3345

鱵

|    |                   | Borehole -> | E11-193 | E11-193 | E11-194 | E11-194 | E11-194 | E11-194   | E11-195 | E11-195 | E11-195 | E11-195 |
|----|-------------------|-------------|---------|---------|---------|---------|---------|-----------|---------|---------|---------|---------|
| No |                   | Sample ID → | S3      | \$4     | S1      | S2      | S3      | <b>54</b> | S1      | S2      | 53      | S4      |
|    | Analyte↓          | Depth, m →  | ~5.0    | ~8.6    | 0.3~0.8 | ~2.0    | ~5.0    | ~10.0     | 0.3~0.8 | ~2.0    | ~5,0    | ~10.0   |
| 1  | 2,4,5-T           | mg/kg       | ND      | ND      | ND      | ND      | NÐ      | ND        | ND      | ND      | ND      | ND      |
| 2  | 2,4,5-TP (Silvex) | mg/kg       | ND      | ND      | ND      | ND      | ND      | ND        | ND      | ND      | NÐ      | ND      |
| 3  | 2,4-D             | mg/kg       | ND      | ND      | ND      | ND      | ND      | ND        | ND      | ND      | ND      | ND      |
| 4  | 2,4-DB            | mg/kg       | ND      | ND      | ND      | ND      | ND      | ND        | NÐ      | ND      | ND      | ND      |
| 5  | Dicamba           | mg/kg       | ND      | NÐ      | ND      | ND      | ND      | ND        | NÐ      | ND      | ND      | ND      |

NOTES:

R: Data rejected ND: Not detected

3346

··· ··· N.

|     |                   | Borehole ->             | E11-196 | E11-196 | E11-196 | E11-196 |
|-----|-------------------|-------------------------|---------|---------|---------|---------|
| No  |                   | Sample ID $\rightarrow$ | S1      | S2      | S3      | S4      |
| 403 | Analyte↓          | Depth, m 🔿              | 0,3~0.8 | ~2.3    | ~5.3    | ~10,3   |
| 1   | 2,4,5-T           | mg/kg                   | NÐ      | ND      | ND      | ND      |
| 2   | 2,4,5-TP (Silvex) | mg/kg                   | ND      | ND      | ND      | ND      |
| 3   | 2,4-D             | mg/kg                   | ND      | ND      | ND      | ND      |
| 4   | 2,4-DB            | mg/kg                   | NÐ      | ND      | ND      | ND      |
| 5   | Dicamba           | mg/kg                   | ND      | ND      | ND      | ND      |

NOTES:

R: Data rejected ND: Not detected

|    |                     | Borehole →              | E11-154 | E11-154 | E11-155 | E11-155 | E11-156 | E11-156 | E11-156 | E11-157     | E11-157 | E11-157 |
|----|---------------------|-------------------------|---------|---------|---------|---------|---------|---------|---------|-------------|---------|---------|
| No |                     | Sample ID $\rightarrow$ | S1      | 52      | S1      | \$2     | S1      | S2      | \$3     | \$ <b>1</b> |         | S3      |
|    | Analyte↓            | Depth, m →              | 0.0~0.5 | ~2.3    | 0.0~0.5 | ~1.8    | 0.0~0.5 | ~2.0    | ~6.45   | 0.0~0.5     | ~2,0    | ~4.5    |
| 1  | 4,4'-DDD            | μg/kg                   | ND      | 2.74    | ND      | 5.14 J  | 0.807 J | 2.15 J  | 0.815 J | ND          | 1.74 J  | ND      |
| 2  | 4,4'-DDE            | μg/kg                   | 1.07 J  | 1.71 J  | ND      | 3,43 J  | 3.65    | 2,52    | 0.85 J  | 1,37 J      | 4,44    | ND      |
| 3  | 4,4'-DDT            | µg/kg                   | 3.61    | 5.22    | 1,05 J  | 11.8    | 8.36    | ND      | ND      | 1.85 J      | 13.3    | 0.909 J |
| 4  | Aldrin              | µg/kg                   | ND          | ND      | ND      |
| 5  | alpha-BHC           | μg/kg                   | ND          | ND      | ND      |
| 6  | alpha-Chlordane     | µg/kg                   | ND          | ND      | ND      |
| 7  | beta-BHC            | µg/kg                   | ND          | ND      | ND      |
| 8  | delta-BHC           | µg/kg                   | ND          | ND      | ND      |
| 9  | Dieldrin            | µg/kg                   | ND          | ND      | ND      |
| 10 | Endosulfan I        | µg/kg                   | ND          | ND      | ND      |
| 11 | Endosulfan ll       | µg/kg                   | ND          | ND      | ND      |
| 12 | Endosulfan sulfate  | µg/kg                   | ND          | ND      | ND      |
| 13 | Endrin              | µg/kg                   | ND          | ND      | ND      |
| 14 | Endrin aldehyde     | µg/kg                   | ND      | NÐ          | ND      | ND      |
| 15 | Endrin ketone       | µg/kg                   | ND          | ND      | ND      |
| 16 | gamma-BHC (Lindane) | µg/kg                   | ND      | ND      | ND      | ND      | ND      | NÐ      | ND      | ND          | ND      | ND      |
| 17 | gamma-Chlordane     | µg/kg                   | ND          | ND      | ND      |
| 18 | Heptachlor          | µg/kg                   | ND          | ND      | ND      |
| 19 | Heptachlor epoxide  | µg/kg                   | ND          | ND      | ND      |
| 20 | Methoxychlor        | µg/kg                   | ND          | ND      | ND      |
| 21 | Toxaphene           | µg/kg                   | ND          | ND      | ND      |

# Table 5. Summary of Organochlorine Pesticide Results for Phase II and IIb Soil Samples

NOTES:

J: Estimated amount between the detection limit and reporting limit

R: Data rejected



|    | Bore                    | hole $\rightarrow$ | E11-158 | E11-158 | E11-158 | E11-158 | E11-159 | E11-159 | E11-159 | E11-159 | E11-160 | E11-160 |
|----|-------------------------|--------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| No | Sampl                   | le ID →            | S1      | \$2     | S3      | S4      | S1      | S2      | S3      | S4      | S1      | S2      |
|    | Analyte↓ Dept           | h, m →             | 0.0~0.5 | ~2.0    | ~5.0    | ~8.5    | 0.0~0.5 | ~2.0    | ~5.0    | ~10.0   | 0.0~0.5 | ~2.0    |
| 1  | 4,4'-DDD µg,            | /kg                | ND      | 34,4    | ND      | ND      | 1,22 J  | 19.7    | 0,795 J | ND      | NÐ      | ND      |
| 2  | 4,4'-DDE μg,            | /kg                | ND      | 15,7    | ND      | ND      | 4.36    | 50.4    | 1.63 J  | ND      | ND      | ND      |
| 3  | 4,4'-DDT μg,            | /kg                | 1.08 J  | 74.7    | ND      | ND      | 19.5    | 174     | 4,14    | 21      | ND      | ND      |
| 4  | Aldrin µg,              | /kg                | ND      | ND      | NÐ      | ND      |
| 5  | alpha-BHC µg,           | /kg                | ND      |
| 6  | alpha-Chlordane µg,     | /kg                | ND      |
| 7  | beta-BHC µg,            | /kg                | ND      |
| 8  | delta-BHC µg,           | /kg                | ND      | ND      | ND      | NÐ      | ND      | ND      | ND      | ND      | ND      | ND      |
| 9  | Dieldrin µg,            | /kg                | ND      |
| 10 | Endosulfan I µg,        | /kg                | ND      |
| 11 | Endosulfan II µg,       | /kg                | ND      |
| 12 | Endosulfan sulfate µg/  | /kg                | ND      |
| 13 | Endrin µg/              | /kg                | ND      |
| 14 | Endrin aldehyde µg/     | /kg                | ND      |
| 15 | Endrin ketone µg/       | /kg                | ND      |
| 16 | gamma-BHC (Lindane) µg/ | /kg                | ND      | ND      | ND      | ND      | ND      | 1.87    | ND      | ND      | ND      | NÐ      |
| 17 | gamma-Chlordane µg/     | /kg                | ND      |
| 18 | Heptachlor µg/          | kg                 | ND      | ND      | NÐ      | ND      | ND      | ND      | ND      | ND      | ND      | NĎ      |
| 19 | Heptachlor epoxide µg/  | kg                 | ND      |
| 20 | Methoxychlor µg/        | kg                 | ND      | ND      | ND      | NÐ      | ND      | ND      | ND      | ND      | ND      | ND      |
| 21 | Toxaphene µg/           | kg                 | ND      |

#### NOTES:

J: Estimated amount between the detection limit and reporting limit

R: Data rejected

3349

|    | Bo                  | orehole → | E11-160 | E11-161 | E11-161 | E11-161 | E11-161 | E11-162 | E11-162 | E11-163 | E11-163 | E11-163 |
|----|---------------------|-----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| No | San                 | mple ID → | 53      | S1      | 52      | S3      | S4      | S1      | \$2     | S1      | S2      | S3      |
|    | Analyte↓ De         | epth, m → | ~3,4    | 0.0~0,5 | ~2.0    | ~5.0    | ~7.9    | 0.0~0.5 | ~1.52   | 0.0~0.5 | ~2.0    | ~5.0    |
| 1  | 4,4'-DDD            | µg/kg     | ND      | 12.8    | 9       | ND      | ND      | 0,764 J | ND      | 1.02 J  | 91      | ND      |
| 2  | 4,4'-DDE            | µg/kg     | ND      | 5.3     | 5,97    | ND      | ND      | 1,85 J  | ND      | 6.05    | 44.9    | ND      |
| 3  | 4,4'-DDT            | µg/kg     | ND      | 68.4    | 49,3    | ND      | ND      | 4.11    | ND      | 11      | 134     | 2,43    |
| 4  | Aldrin              | µg/kg     | ND      |
| 5  | alpha-BHC           | µg/kg     | NÐ      | ND      |
| 6  | alpha-Chlordane     | µg/kg     | ND      |
| 7  | beta-BHC            | µg/kg     | ND      |
| 8  | delta-BHC           | µg/kg     | ND      |
| 9  | Dieldrin            | µg/kg     | ND      | ND      | ND .    | ND      | ND      | ND      | ND      | NÐ      | ND      | ND      |
| 10 | Endosulfan I        | µg/kg     | ND      |
| 11 | Endosulfan li       | µg/kg     | ND      | NÐ      | ND      |
| 12 | Endosulfan sulfate  | µg/kg     | ND      |
| 13 | Endrin              | µg/kg     | ND      |
| 14 | Endrin aldehyde     | µg/kg     | ND      |
| 15 | Endrin ketone       | µg/kg     | ND      |
| 16 | gamma-BHC (Lindane) | µg/kg     | ND      | NÐ      | ND      | ND      | ND      | ND      | ND      | NÐ      | 12.6 J  | ND      |
| 17 | gamma-Chlordane     | µg/kg     | ND      |
| 18 | Heptachlor I        | µg/kg     | ND      |
| 19 | Heptachlor epoxide  | µg/kg     | ND      |
| 20 | Methoxychlor        | µg/kg     | ND      | NÐ      | ND      | ND      |
| 21 | Toxaphene I         | µg/kg     | ND      |

.

#### NOTES:

J: Estimated amount between the detection limit and reporting limit

R: Data rejected

|    |                     | Borehole →  | E11-163 | E11-164    | E11-164 | E11-164    | E11-164   | E11-165 | E11-165 | E11-165 | E11-165 | E11-166 |
|----|---------------------|-------------|---------|------------|---------|------------|-----------|---------|---------|---------|---------|---------|
| No | S                   | Sample ID → | S4      | <b>\$1</b> | S2      | <b>S</b> 3 | <b>S4</b> | S1      | S2      | 53      | S4      | S1      |
|    | Analyte↓            | Depth, m →  | ~10.0   | 0.0~0.5    | ~2.0    | ~5.0       | ~11.0     | 0.0~0.5 | ~2.0    | ~5.0    | ~10.0   | 0.3~0.8 |
| 1  | 4,4'-DDD            | µg/kg       | ND      | ND         | 21      | 1.28 J     | ND        | NÐ      | 6.11    | 261     | 3,89    | 1.81 J  |
| 2  | 4,4'-DDE            | µg/kg       | ND      | ND         | 46      | 1.42 J     | ND        | 1.35 J  | 8.04    | 58.3 J  | 1.8 J   | 7.31    |
| 3  | 4,4'-DDT            | µg/kg       | 2.96    | 1,24 J     | 134     | 18         | ND        | ND      | 68.6    | 643     | 15.7    | 18.7    |
| 4  | Aldrin              | µg/kg       | ND      | ND         | ND      | ND         | ND        | ND      | ND      | ND      | ND      | ND      |
| 5  | alpha-BHC           | µg/kg       | ND      | ND         | ND      | ND         | ND        | ND      | ND      | ND      | 0.887 J | ND      |
| 6  | alpha-Chlordane     | µg/kg       | ND      | ND         | ND      | ND         | ND        | ND      | ND      | ND      | ND      | ND      |
| 7  | beta-BHC            | μg/kg       | ND      | ND         | ND      | ND         | ND        | ND      | 0.647 J | ND      | 0.732 J | ND      |
| 8  | delta-BHC           | µg/kg       | ND      | ND         | ND      | ND         | ND        | ND      | NĎ      | ND      | 1.16 J  | ND      |
| 9  | Dieldrin            | µg/kg       | ND      | ND         | 3:24    | ND         | ND        | ND      | ND      | ND      | ND      | ND      |
| 10 | Endosulfan I        | µg/kg       | ND      | ND         | ND      | ND         | ND        | ND      | ND      | ND      | ND      | ND      |
| 11 | Endosulfan II       | µg/kg       | NÐ      | ND         | ND      | ND         | ND        | ND      | ND      | ND      | ND      | ND      |
| 12 | Endosulfan sulfate  | µg/kg       | ND      | ND         | ND      | ND         | ND        | ND      | ND      | ND      | ND      | ND      |
| 13 | Endrin              | µg/kg       | ND      | NÐ         | ND      | ND         | ND        | ND      | ND      | ND      | ND      | NÐ      |
| 14 | Endrin aldehyde     | µg/kg       | ND      | ND         | ND      | ND         | ND        | ND      | NÐ      | ND      | ND      | ND      |
| 15 | Endrin ketone       | μg/kg       | ND      | ND         | ND      | ND         | ND        | ND      | ND      | ND      | ND      | ND      |
| 16 | gamma-BHC (Lindane) | µg/kg       | NÐ      | ND         | 1.99    | ND         | ND        | ND      | 1.4 J   | 56.4 J  | 43.8    | ND      |
| 17 | gamma-Chlordane     | µg/kg       | ND      | ND         | ND      | ND         | ND        | ND      | ND      | ND      | ND      | ND      |
| 18 | Heptachlor          | µg/kg       | ND      | ND         | ND      | ND         | ND        | ND      | ND      | ND      | ND      | ND      |
| 19 | Heptachlor epoxide  | µg/kg       | ND      | ND         | ND      | ND         | ND        | ND      | ND      | ND      | ND      | ND      |
| 20 | Methoxychlor        | µg/kg       | ND      | ND         | ND      | ND         | ND        | ND      | ND      | ND      | ND      | ND      |
| 21 | Toxaphene           | µg/kg       | ND      | ND         | ND      | ND         | ND        | ND      | ND      | ND      | ND      | ND      |

.

κ.

×

-

#### NOTES:

3: Estimated amount between the detection limit and reporting limit

R: Data rejected

|    | Bore                    | hole →  | E11-166 | E11-167   | E11-167 | E11-167 | E11-168 | E11-168 | E11-169 | E11-169 | E11-170 | E11-170 |
|----|-------------------------|---------|---------|-----------|---------|---------|---------|---------|---------|---------|---------|---------|
| No | Samp                    | le ID → | S2      | <b>S1</b> | S2      | S3      | 51      | \$2     | 51      | S2      | S1      | S2      |
| 84 | Analyte↓ Dept           | :h, m → | ~2,7    | 0.0~0,5   | ~2.0    | ~5.5    | 0.0~0.5 | ~3.0    | 0.0~0.5 | ~1.8    | 0.0~0.5 | ~2.0    |
| 1  | 4,4'-DDD μg             | ;/kg    | ND      | 645       | 617     | 46,5    | 356     | 5.63    | 183 J   | 95.9    | 1130    | 2,19 J  |
| 2  | 4,4'-DDE μg             | ;/kg    | ND      | 428 J     | 297 J   | 54      | 198     | 4.57    | 248     | 47,1    | 2830    | 3,18    |
| 3  | 4,4'-DDT µg             | r/kg    | 0,807 J | 8160      | 9150    | 225     | 814     | 29.7    | 1020    | 145     | 3780    | 4.97    |
| 4  | Aldrin µg               | ;/kg    | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND      | NĎ      |
| 5  | alpha-BHC µg            | ;/kg    | ND      | 10,9 J    | 47.8    | ND      |
| 6  | alpha-Chlordane µg      | ;/kg    | ND      | 6.77 J    | 3.29 J  | ND      | 19.7    | 1.26 J  | 9.3     | 1.21 J  | ND      | ND      |
| 7  | beta-BHC µg             | /kg     | ND      | 11.9 J    | 24.3    | ND      | ND      | ND      | 3.04 J  | ND      | ND      | ND      |
| 8  | delta-BHC µg            | /kg     | ND      | 26.5      | 56.5    | ND      |
| 9  | Dieldrin µg             | /kg     | ND      | 60.3      | 52,9    | ND      | 16.5 J  | ND      | 16.5    | ND      | ND      | ND      |
| 10 | Endosulfan I µg,        | ;/kg    | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 11 | Endosulfan II µg,       | /kg     | ND      | ND        | ND      | ND      | ND      | NÐ      | ND      | ND      | ND      | ND      |
| 12 | Endosulfan sulfate µg,  | /kg     | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 13 | Endrin µg,              | /kg     | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 14 | Endrin aldehyde µg,     | /kg     | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 15 | Endrin ketone µg,       | /kg     | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 16 | gamma-BHC (Lindane) µg, | /kg     | 0.925 J | 388       | 870     | 47.9    | ND      | ND      | ND      | ND      | 4.32 J  | ND      |
| 17 | gamma-Chlordane µg,     | /kg     | ND      | 8.2 J     | 3.69 J  | ND      | 20.5    | 1,25 J  | 9.82    | 1.17 J  | 2.72 J  | ND      |
| 18 | Heptachlor µg,          | /kg     | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 19 | Heptachlor epoxide µg/  | /kg     | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      | NÐ      | ND      |
| 20 | Methoxychlor µg/        | /kg     | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 21 | Toxaphene μg/           | /kg     | ND      | ND        | ND      | NÐ      | ND      | NÐ      | ND      | ND      | ND      | ND      |

#### NOTES:

J: Estimated amount between the detection limit and reporting limit

R: Data rejected

3352

\$

|     | Bol                         | rehole $\rightarrow$ | E11-170 | E11-170 | E11-171 | E11-171 | E11-171 | E11-172   | E11-172 | E11-172 | E11-172 | E11-173 |
|-----|-----------------------------|----------------------|---------|---------|---------|---------|---------|-----------|---------|---------|---------|---------|
| No  | Sam                         | ple ID →             | S3      | S4      | \$1     | S2      | \$3     | <b>S1</b> | S2      | S3      | S4      | S1      |
| 993 | Analyte↓ Der                | pth, m $ ightarrow$  | ~5.0    | ~7.5    | 0.0~0.5 | ~2.0    | ~6.5    | 0.0~0.5   | ~2.0    | ~5.0    | ~8.7    | 0.0~0.5 |
| 1   | 4,4'-DDD                    | ug/kg                | 1.25 J  | ND      | 45,1    | 1880    | 333     | 174       | 704 J   | 1.29 J  | 1.68 J  | 115     |
| 2   | 4,4°-DDE                    | ⊥g/kg                | 1.28 J  | ND      | 23.6    | 491 J   | 59.8    | 145       | 205     | 0.703 J | 0.805 J | 158     |
| 3   | 4,4'-DDT                    | ıg/kg                | ND      | ND      | 208     | 5340    | 63.4    | 436       | 11200   | 5.4     | 11,3    | 198     |
| 4   | Aldrin                      | ⊥g/kg                | ND      | ND      | ND      | ND      | ND      | ND        | NÐ      | ND      | ND      | 9,04    |
| 5   | alpha-BHC µ                 | ug/kg                | ND      | ND      | ND      | NÐ      | ND      | ND        | ND      | ND      | ND      | ND      |
| 6   | alpha-Chlordane µ           | ıg/kg                | ND      | ND      | ND      | 78.7    | ND      | 15.6 J    | ND      | ND      | ND      | 1.15 J  |
| 7   | beta-BHC P                  | ug/kg                | NÐ      | ND      | ND      | 2,96 J  | ND      | ND        | ND      | ND      | ND      | ND      |
| 8   | delta-BHC µ                 | ıg/kg                | ND      | ND      | ND      | ND      | ND      | ND        | ND      | ND      | ND      | ND      |
| 9   | Dieldrin µ                  | lg∕kg                | ND      | ND      | ND      | ND      | ND      | ND        | 48.3    | ND      | ND      | 61.7    |
| 10  | Endosulfan I 🛛 🛛 🖓          | lg/kg                | ND      | ND      | ND      | ND      | ND      | ND        | ND      | ND      | NÐ      | ND      |
| 11  | Endosulfan II 🛛 🛛 🛛 🛛       | lg/kg                | ND      | ND      | ND      | ND      | ND      | ND        | ND      | ND      | NÐ      | ND      |
| 12  | Endosulfan sulfate 🛛 🛛 🖉    | ıg/kg                | ND      | ND      | ND      | ND      | ND      | ND        | NÐ      | ND      | ND      | ND      |
| 13  | Endrin µ                    | lg∕kg                | ND      | ND      | ND      | ND      | ND      | ND        | ND      | ND      | ND      | ND      |
| 14  | Endrin aldehyde µ           | lg/kg                | ND      | ND      | ND      | ND      | ND      | ND        | NÐ      | ND      | ND      | ND      |
| 15  | Endrin ketone 🛛 🙀           | lg/kg                | ND      | ND      | ND      | ND      | ND      | ND        | ND      | ND      | ND      | ND      |
| 16  | gamma-BHC (Lindane) 🛛 🛛 🛛 🛛 | ıg/kg                | 1.69 J  | ND      | ND      | 4.5 J   | ND      | ND        | 72.9    | 0.723 J | ND      | ND      |
| 17  | gamma-Chlordane µ           | ig/kg                | ND      | ND      | 2,64 J  | 93      | ND      | 16.6 J    | ND      | ND      | ND      | 1.57 J  |
| 18  | Heptachlor µ                | lg/kg                | ND      | ND      | ND      | ND      | ND      | ND        | ND      | ND      | ND      | ND      |
| 19  | Heptachlor epoxide 🛛 🛛 🛛 🛏  | lg/kg                | ND      | ND      | ND      | 8.27 J  | ND      | ND        | ND      | ND      | ND      | ND      |
| 20  | Methoxychlor µ              | g/kg                 | ND      | ND      | ND      | ND      | ND      | ND        | ND      | ND      | ND      | ND      |
| 21  | Toxaphene µ                 | g/kg                 | ND      | ND      | ND      | NÐ      | ND      | ND        | ND      | ND      | ND      | ND      |

## NOTES:

J: Estimated amount between the detection limit and reporting limit

R: Data rejected

# 3353

~6

|    | Borr                     | ehole →  | E11-173 | E11-173            | E11-173 | E11-174 | E11-174 | E11-174 | E11-174 | E11-175 | E11-175 | E11-175 |
|----|--------------------------|----------|---------|--------------------|---------|---------|---------|---------|---------|---------|---------|---------|
| No | Samı                     | ple ID → | S2      | S3                 | S4      | 51      | S2      | 53      | S4      | S1      | S2      | S3      |
|    | Analyte↓ Dep             | ith, m → | ~2.0    | ~5.0               | ~10,0   | 0.3~0.8 | ~2.3    | 2.3~5.3 | ~8.9    | 0.0~0.5 | ~2.0    | ~5.0    |
| 1  | 4,4'-DDD μ               | g/kg     | 23,4    | 4.04               | ND      | 211     | 577 J   | 1.14 J  | 3,29    | 364     | 267     | 6,54    |
| 2  | 4,4'-DDE μι              | g/kg     | 14,1    | 2.51               | ND      | 55.6    | ND      | 0.747 J | 0.959 J | 186     | 12.4    | 1.61 J  |
| 3  | 4,4'-DDT μ               | g/kg     | 62.6    | 888 <b>1,1</b> 988 | ND      | 2270    | 1850    | 9.84    | 7.95    | 110     | 52.2    | 12.7    |
| 4  | Aldrin µ                 | g/kg     | ND      | ND                 | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 5  | alpha-BHC µ              | g/kg     | ND      | ND                 | 1,71 J  | 417     | 209 J   | 1.03 J  | 0.851 J | ND      | ND      | ND      |
| 6  | alpha-Chlordane μ        | g/kg     | 3.15    | ND                 | ND      | ND      | ND      | ND      | NÐ      | 33.4    | 1.04 J  | ND      |
| 7  | beta-BHC µį              | g/kg     | ND      | NÐ                 | ND      | 112     | ND      | 0.817 J | 0.684 J | 1,18 J  | ND      | ND      |
| 8  | delta-BHC µ              | g/kg     | ND      | ND                 | 0.911 ) | 427     | 301 J   | 1.88    | 1,58 J  | 0.69 J  | ND      | ND      |
| 9  | Dieldrin µı              | g/kg     | ND      | 1.87 J             | ND      | ND      | ND      | ND      | ND      | 13      | 1.76 J  | ND      |
| 10 | Endosulfan l 🛛 🛛 🗛       | g/kg     | ND      | ND                 | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 11 | Endosulfan II 🛛 🛛 🛛 🛛    | g/kg     | ND      | ND                 | ND      | NÐ      | NÐ      | ND      | ND      | ND      | ND      | ND      |
| 12 | Endosulfan sulfate 🛛 🛛 🖉 | g/kg     | ND      | ND                 | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 13 | Endrin 🏨                 | g/kg     | ND      | ND                 | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 14 | Endrin aldehyde 🛛 🛛 🗛    | g/kg     | ND      | ND                 | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 15 | Endrin ketone 🛛 🛛 🗛      | g/kg     | ND      | ND                 | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 16 | gamma-BHC (Lindane) με   | g/kg     | ND      | ND                 | 9.08    | 13900   | 4010    | 16.8    | 8.97    | 2.62    | 0.559 ) | ND      |
| 17 | gamma-Chlordane µg       | g/kg     | 3,98    | ND                 | ND      | ND      | ND      | ND      | ND      | 35.7    | ND      | ND      |
| 18 | Heptachlor µg            | g/kg     | ND      | ND                 | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 19 | Heptachlor epoxide µg    | g/kg     | ND      | ND                 | ND      | ND      | ND      | ND      | ND      | 3.07    | NÐ      | ND      |
| 20 | Methoxychlor µg          | g/kg     | ND      | ND                 | ND      | NÐ      | ND      | NÐ      | ND      | ND      | ND      | ND      |
| 21 | Toxaphene μg             | g/kg     | ND      | ND                 | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND.     |

#### NOTES:

J: Estimated amount between the detection limit and reporting limit

R: Data rejected

3354

e

|    | B                   | lorehole → | E11-175 | E11-176   | E11-176 | E11-176 | E11-176 | E11-177   | E11-177    | E11-177   | E11-177 | E11-178 |
|----|---------------------|------------|---------|-----------|---------|---------|---------|-----------|------------|-----------|---------|---------|
| No | Sa                  | mple ID →  | S4      | <b>S1</b> | S2      | S3      | S4      | <b>S1</b> | <b>S</b> 2 | <b>S3</b> | \$4     | S1.     |
|    | Analyte↓ D          | epth, m →  | ~7,25   | 0.0~0.5   | ~2.0    | ~5.0    | ~10.0   | 0,4~0.9   | ~2,4       | ~5,4      | ~9.0    | 0.0~0.5 |
| 1  | 4,4'-DDD            | µg/kg      | ND      | 320       | 90      | 8.72    | 0.839 J | 122       | 128        | ND        | ND      | 7400    |
| 2  | 4,4'-DDE            | µg/kg      | ND      | 228       | 52.2    | 2.62    | ND      | 66.2      | 78,7       | ND        | ND      | 1600    |
| 3  | 4,4'-DDT            | µg/kg      | ND      | 454       | 226     | 1.5 J   | ND      | 214       | 207        | ND        | 0,755 J | 26900   |
| 4  | Aldrin              | µg/kg      | ND      | 9.27      | 4,3     | ND      | ND      | ND        | ND         | ND        | ND      | ND      |
| 5  | alpha-BHC           | μg/kg      | ND      | ND        | ND      | ND      | ND      | NÐ        | ND         | ND        | ND      | ND      |
| 6  | alpha-Chlordane     | µg/kg      | ND      | 1.6 J     | 2.44    | ND      | ND      | ND        | ND         | ND        | NÐ      | ND      |
| 7  | beta-BHC            | µg/kg      | ND      | ND        | 1,99    | ND      | ND      | ND        | 7,54 J     | ND        | ND      | 10.7    |
| 8  | delta-BHC           | µg/kg      | ND      | ND        | ND      | ND      | ND      | ND        | ND         | ND        | ND      | ND      |
| 9  | Dieldrin            | µg/kg      | NÐ      | 87        | 31,1    | 2.12 J  | NÐ      | NÐ        | 9.51 J     | ND        | ND      | 336 J   |
| 10 | Endosulfan I        | µg/kg      | ND      | NĎ        | ND      | ND      | ND      | ND        | NĎ         | ND        | ND      | ND      |
| 11 | Endosulfan II       | µg/kg      | ND      | ND        | ND      | ND      | ND      | ND        | ND         | ND        | ND      | ND      |
| 12 | Endosulfan sulfate  | µg/kg      | ND      | ND        | ND      | ND      | ND      | ND        | NĎ         | ND        | ND      | ND      |
| 13 | Endrin              | µg/kg      | ND      | ND        | ND      | ND      | ND      | ND        | ND         | ND        | ND      | ND      |
| 14 | Endrin aldehyde     | µg/kg      | NÐ      | ND        | ND      | ND      | ND      | ND        | ND         | ND        | ND      | ND      |
| 15 | Endrin ketone       | µg/kg      | ND      | ND        | ND      | ND      | ND      | ND        | ND         | ND        | ND      | ND      |
| 16 | gamma-BHC (Lindane) | µg/kg      | ND      | ND        | ND      | ND      | NÐ      | ND        | 12.8 J     | 0.923 J   | ND      | 5,26 J  |
| 17 | gamma-Chlordane     | µg/kg      | ND      | 2,18      | 3.08    | ND      | ND      | ND        | ND         | ND        | ND      | ND      |
| 18 | Heptachlor          | µg/kg      | ND      | ND        | ND      | ND      | ND      | ND        | ND         | ND        | ND      |         |
| 19 | Heptachlor epoxide  | µg/kg      | ND      | ND        | ND      | ND      | ND      | ND        | ND         | ND        | ND      | 11.1    |
| 20 | Methoxychlor        | µg/kg      | ND      | ND        | ND      | ND      | ND      | ND        | ND         | ND        | ND      | ND      |
| 21 | Toxaphene           | µg/kg      | NÐ      | ND        | ND      | ND      | ND      | ND        | ND         | ND        | ND      | ND      |

#### NOTES:

J: Estimated amount between the detection limit and reporting limit

R: Data rejected



|    | Borehol                   | e → E11-178 | E11-178 | E11-178 | E11-179 | E11-179 | E11-179 | E11-179 | E11-180 | E11-180 | E11-180 |
|----|---------------------------|-------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| No | Sample I                  | D.→ S2      | S3      | S4      | \$1     | \$2     | S3      | S4      | S1      | S2      | 53      |
|    | Analyte↓ Depth, r         | n → ~~2.0   | ~5.0    | ~10.0   | 0.0~0.5 | ~2.0    | ~5.0    | ~10.0   | 0.0~0.5 | ~2.0    | ~5.0    |
| 1  | 4,4'-DDD μg/kg            | 74,7        | 11.6    | 8.36    | 13500   | 459     | 212     | 129     | 27      | 6.67    | 59.3    |
| 2  | 4,4'-DDE µg/kg            | 29.2        | 2,39    | 2.46    | 1620    | 15.4    | 6.04    | 4,28    | 80.2    | 9.76    | 7.7     |
| 3  | 4,4'-DDT μg/kg            | 243         | 36      | 18,1    | 70200   | 111     | 44.9 J  | 29 J    | 74      | 61.6    | 18      |
| 4  | Aldrin µg/kg              | ND          | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 5  | alpha-BHC µg/kg           | ND          | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      | 0.765 J |
| 6  | alpha-Chlordane µg/kg     | NÐ          | ND      | ND      | 11 J    | 0.768 J | ND      | ND      | ND      | ND      | 0.761 J |
| 7  | beta-BHC µg/kg            | 0.6 J       | ND      | ND      | 34.4    | 1,23 J  | ND      | ND      | ND      | ND      | 1.79    |
| 8  | delta-BHC µg/kg           | ND          | ND      | ND      | 29,9    | NÐ      | ND      | ND      | ND      | ND      | 5.57    |
| 9  | Dieldrin µg/kg            | 3.13        | 0,851 J | ND      | 127     | ND      | 1.52 J  | ND      | ND      | ND      | ND      |
| 10 | Endosulfan I µg/kg        | NÐ          | ND      | NÐ      | ND      |
| 11 | Endosulfan II µg/kg       | ND          | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 12 | Endosulfan sulfate µg/kg  | ND          | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      | NÐ      |
| 13 | Endrin µg/kg              | ND          | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 14 | Endrin aldehyde µg/kg     | ND          | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 15 | Endrin ketone µg/kg       | ND          | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 16 | gamma-BHC (Lindane) µg/kg | 1,9         | 4.11    | ND      | 32      | 0.897 J | ND      | ND      | ND      | ND      | ND      |
| 17 | gamma-Chlordane µg/kg     | ND          | ND      | ND      | 13,1 J  | 0.84 J  | ND      | ND      | ND      | ND      | 1.16 J  |
| 18 | Heptachlor µg/kg          | ND          | ND      | NÐ      | ND      | ND      | ND      | NÐ      | ND      | ND      | ND      |
| 19 | Heptachlor epoxide µg/kg  | ND          | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 20 | Methoxychlor µg/kg        | NÐ          | ND      |
| 21 | Toxaphene µg/kg           | ND          | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |

#### NOTES:

J: Estimated amount between the detection limit and reporting limit

R: Data rejected

3356

•

`

.

鹵

|    | B                   | Borehole → | E11-180 | E11-181 | E11-181   | E11-181 | E11-182 | E11-182 | E11-182 | E11-182 | E11-183   | E11-183 |
|----|---------------------|------------|---------|---------|-----------|---------|---------|---------|---------|---------|-----------|---------|
| No | Sa                  | ample ID → | S4      | S1      | <b>S2</b> | S3      | S1      | S2      | S3      | S4      | <b>S1</b> | S2      |
|    | Analyte↓ D          | Depth, m → | ~10.0   | 0.0~0.5 | ~2.0      | ~5,0    | 0.0~0.5 | ~2.0    | ~5.0    | ~10.0   | 0.0~0.5   | ~2.0    |
| 1  | 4,4'-DDD            | µg/kg      | 3.99    | 210     | 9,35 J    | 13      | 6.09    | 190     | 4180    | 0.981 J | ND        | 1.15 J  |
| 2  | 4,4'-DDE            | µg/kg      | ND      | 216     | 11.2 J    | 6.94    | 36,5    | 78.8    | 308     | ND      | ND        | 2,84    |
| 3  | 4,4'-DDT            | µg/kg      | 1.73 J  | 1970    | 89.1      | 48      | 22.9    | 730     | 7470    | 1,71 J  | ND        | 12.2    |
| 4  | Aldrin              | µg/kg      | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND        | ND      |
| 5  | alpha-BHC           | µg/kg      | NÐ      | ND      | ND        | ND      | ND      | ND      | 7.23    | ND      | ND        | ND      |
| 6  | alpha-Chlordane     | µg/kg      | ND      | 6.46    | ND        | 0.55 J  | ND      | ND      | 1.66 J  | ND      | ND        | ND      |
| 7  | beta-BHC            | µg/kg      | ND      | ND      | ND        | 0.841 J | ND      | ND      | 9.11    | ND      | ND        | ND      |
| 8  | delta-BHC           | µg/kg      | ND      | ND      | ND        | 0.573 J | ND      | NÐ      | 84.7    | ND      | ND        | ND      |
| 9  | Dieldrin            | µg/kg      | NÐ      | 16.3    | ND        | ND      | ND      | ND      | 21,8    | ND      | ND        | ND      |
| 10 | Endosulfan I        | µg/kg      | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND        | ND      |
| 11 | Endosulfan II       | µg/kg      | ND      | ND      | ND        | ND      | ND      | ND      | NÐ      | ND      | ND        | ND      |
| 12 | Endosulfan sulfate  | µg/kg      | ND      | ND      | ND        | ND      | ND      | ND      | ND      | NÐ      | NĎ        | ND      |
| 13 | Endrin              | µg/kg      | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND        | ND      |
| 14 | Endrin aldehyde     | µg/kg      | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND        | ND      |
| 15 | Endrín ketone       | µg/kg      | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | NÐ        | ND      |
| 16 | gamma-BHC (Lindane) | µg/kg      | ND      | ND      | ND        | 0.818 J | ND      | 19.7    | 305     | ND      | ND        | NÐ      |
| 17 | gamma-Chlordane     | µg/kg      | NÐ      | 5,92    | ND        | ND      | ND      | ND      | 2.03    | ND      | ND        | ND      |
| 18 | Heptachlor          | µg/kg      | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND        | ND      |
| 19 | Heptachlor epoxide  | µg/kg      | ND      | 1.36 J  | ND        | ND      | ND      | ND      | ND      | ND      | ND        | ND      |
| 20 | Methoxychlor        | µg/kg      | ND      | ND      | ND        | ND      | ND      | ND      | ND      | NÐ      | ND        | ND      |
| 21 | Toxaphene           | µg/kg      | ND      | ND      | NĎ        | ND      | NÐ      | ND      | ND      | ND      | ND        | ND      |

#### NOTES:

J: Estimated amount between the detection limit and reporting limit

R: Data rejected

| 345 | Boi                       | rehole →             | E11-183 | E11-183    | E11-184 | E11-184 | E11-184 | E11-184 | E11-185 | E11-185 | E11-185 | E11-185 |
|-----|---------------------------|----------------------|---------|------------|---------|---------|---------|---------|---------|---------|---------|---------|
| No  | Sam                       | nple ID →            | S3      | <b>\$4</b> | S1      | 52      | S3      | S4      | S1      | S2      | S3      | S4      |
|     | Analyte↓ De               | pth, m $\rightarrow$ | ~5.0    | ~10.0      | 0.0~0.5 | ~2,0    | ~5.0    | ~8.75   | 0.0~0.5 | ~2.0    | ~5.0    | ~8.8    |
| 1   | 4,4'-DDD 1                | µg/kg                | 150     | ND         | 124     | 341 J   | 2.06 J  | ND      | 427     | 257     | 2.61    | ND      |
| 2   | 4,4'-DDE I                | µg/kg                | 17.2    | ND         | 97.9    | 142     | 1.08 J  | ND      | 134     | 99.5    | 1.78 J  | ND      |
| 3   | 4,4'-DDT I                | µg/kg                | 89.7    | 0.726 J    | 620     | 3840    | 4,36    | 0,926 J | 1510    | 422     | 11.2    | ND      |
| 4   | Aldrin                    | µg/kg                | ND      | ND         | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 5   | alpha-BHC                 | µg/kg                | ND      | ND         | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 6   | alpha-Chlordane J         | µg/kg                | ND      | ND         | 6,43 J  | ND      |
| 7   | beta-BHC I                | µg/kg                | ND      | 0.607 J    | ND      | ND      | NĎ      | ND      | ND      | ND      | ND      | ND      |
| 8   | delta-BHC                 | µg/kg                | ND      | 1.11 J     | ND      |
| 9   | Dieldrin J                | µg/kg                | ND      | ND         | 10.2 J  | ND      | ND      | ND      | 34.1 J  | ND      | ND      | ND      |
| 10  | Endosulfan I µ            | µg/kg                | ND      | ND         | ND      | ND      | ND      | ND      | NÐ      | ND      | ND      | ND      |
| 11  | Endosulfan II 🛛 🖓         | µg/kg                | ND      | ND         | ND      | ND      | ND      | ND      | ND      | NÐ      | ND      | ND      |
| 12  | Endosulfan sulfate 🛛 🛛 🖉  | µg/kg                | ND      | ND         | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 13  | Endrin µ                  | µg/kg                | ND      | ND         | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 14  | Endrin aldehyde 🛛 🛛 🛛     | µg/kg                | ND      | ND         | ND      | ND      | NÐ      | ND      | ND      | ND      | ND      | ND      |
| 15  | Endrin ketone p           | µg/kg                | ND      | NÐ         | ND      |
| 16  | gamma-BHC (Lindane) 🛛 🛛 🛛 | µg/kg                | 3.07    | 1.21 J     | ND      |
| 17  | gamma-Chlordane µ         | µg/kg                | ND      | ND         | 5.17 J  | ND      | ND      | ŅD      | ND      | ND      | ND      | ND      |
| 18  | Heptachlor µ              | µg/kg                | ND      | ND         | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 19  | Heptachlor epoxide µ      | ug/kg                | ND      | ND         | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 20  | Methoxychlor µ            | ug/kg                | ND      | ND         | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 21  | Toxaphene µ               | ⊥g/kg                | ND      | NÐ         | ND      |

3358

#### NOTES:

J: Estimated amount between the detection limit and reporting limit

R: Data rejected

|       | Borehol                   | e → E11-186 | E11-186 | E11-186 | E11-186 | E11-187   | E11-187 | E11-187 | E11-187 | E11-188 | E11-188 |
|-------|---------------------------|-------------|---------|---------|---------|-----------|---------|---------|---------|---------|---------|
| No    | Sample I                  | D → S1      | S2      | S3      | S4      | <b>S1</b> | S2      | \$3     | S4      | S1      | S2      |
| 3135× | Analyte↓ Depth, I         | n → 0.0~0.5 | ~2.0    | ~5.0    | ~8.0    | 0.0~0.5   | ~2.0    | ~5.0    | ~10.0   | 0.0~0.5 | ~2.0    |
| 1     | 4,4'-DDD µg/kg            | 121         | 22.2    | 3,38    | 0.974 J | 570 J     | 1750    | 3.21    | 1.34 J  | 2670    | 1640    |
| 2     | 4,4'-DDE µg/kg            | 72.1        | 18.7    | 2:32    | ND      | ND        | 217     | 0.953 J | ND      | 435 J   | 297 J   |
| 3     | 4,4'-DDT µg/kg            | 1130        | 178     | 18.4    | 4.57    | 1920      | 4570    | 8.04    | ND      | 8020    | 4450    |
| 4     | Aldrin µg/kg              | ND          | ND      | ND      | ND      | ND        | ND      | ND      | NÐ      | ND      | ND      |
| 5     | alpha-BHC µg/kg           | ND          | ND      | ND      | ND      | NÐ        | ND      | ND      | ND      | 2,16    | 11.4 J  |
| 6     | alpha-Chlordane µg/kg     | ND          | 0.703 J | ND      | ND      | 2.63      | 11.3 J  | 0.632 J | ND      | 5.23    | 9,9.1   |
| 7     | beta-BHC µg/kg            | ND          | 0.654 J | ND      | ND      | 1.14 J    | 16,8    | 0.633 J | ND      | 6.46    | 9.76 J  |
| 8     | delta-BHC µg/kg           | ND          | ND      | ND      | ND      | ND        | 17,5    | ND      | ND      | 12.7    | 19.3    |
| 9     | Dieldrin µg/kg            | 16.9 J      | 2.92    | ND      | ND      | 6.79      | 74.3    | 0.684 J | ND      | ND      | 61,2    |
| 10    | Endosulfan I µg/kg        | ND          | ND      | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      |
| 11    | Endosulfan II µg/kg       | ND          | ND      | ND      | ND      | ND        | ND      | ND      | NÐ      | ND      | ND      |
| 12    | Endosulfan sulfate µg/kg  | ND          | ND      | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      |
| 13    | Endrin µg/kg              | ND          | ND      | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      |
| 14    | Endrin aldehyde µg/kg     | ND          | ND      | ND      | NÐ      | ND        | ND      | ND      | ND      | ND      | ND      |
| 15    | Endrin ketone µg/kg       | ND          | ND      | ND      | ND      | NÐ        | ND      | ND      | ND      | 2.31 J  | ND      |
| 16    | gamma-BHC (Lindane) µg/kg | ND          | ND      | ND      | ND      | 2,17      | 49.7    | NÐ      | ND      | ND      | 190     |
| 17    | gamma-Chlordane µg/kg     | ND          | 0.744 J | ND      | ND      | 2.54      | 15 J    | ND      | ND      | 6.89    | 12.6 J  |
| 18    | Heptachlor µg/kg          | ND          | ND      | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      |
| 19    | Heptachlor epoxide µg/kg  | ND          | ND      | ND      | ND      | 0.943 J   | ND      | ND      | ND      | ND      | ND      |
| 20    | Methoxychlor µg/kg        | ND          | ND      | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      |
| 21    | Toxaphene µg/kg           | ND          | ND      | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      |

3359

#### NOTES:

3: Estimated amount between the detection limit and reporting limit

R: Data rejected

|    | Bor                    | rehole →             | E11-188 | E11-188 | E11-189 | E11-189 | E11-189 | E11-189   | E11-190 | E11-190 | E11-190 | E11-190        |
|----|------------------------|----------------------|---------|---------|---------|---------|---------|-----------|---------|---------|---------|----------------|
| No | Sam                    | ple ID →             | \$3     | S4      | S1      | S2      | S3      | <b>54</b> | S1      | S2      | S3      | S4             |
|    | Analyte↓ Dep           | oth, m $\rightarrow$ | ~5.0    | ~9.6    | 0,0~0.5 | ~2.0    | ~5,0    | ~10.0     | 0.0~0.5 | ~2.0    | ~5,0    | ~10.0          |
| 1  | 4,4'-DDD μ             | ıg/kg                | 5.69    | 1.43 J  | 465     | 13.8    | 0.9 J   | ND        | ND      | ND      | ND      | ND             |
| 2  | 4,4'-DDE µ             | ug/kg                | 1.63 J  | 0.768 ) | 122     | 11.5    | 0.762 J | ND        | ND      | 0.773 J | ND      | ND             |
| 3  | 4,4'-DDT μ             | lg∕kg                | 17,6    | ND      | 1340    | 85,7    | ND      | ND        | ND      | 1,51 J  | 25.8    | <b>1.8</b> 7 J |
| 4  | Aldrin µ               | ug/kg                | ND      | ND      | ND      | ND      | ND      | ND        | ND      | ND      | ND      | ND             |
| 5  | alpha-BHC µ            | ıg/kg                | ND      | ND      | NÐ      | ND      | ND      | NÐ        | ND      | ND      | ND      | ND             |
| 6  | alpha-Chlordane µ      | ug/kg                | ND      | ND      | ND      | ND      | ND      | ND        | ND      | ND      | ND      | ND             |
| 7  | beta-BHC µ             | ıg/kg                | ND      | ND      | 13.5 J  | 1,25 J  | 1,18 J  | ND        | ND      | ND      | ND      | ND             |
| 8  | delta-BHC μ            | ıg/kg                | ND      | ND      | ND      | ND      | ND      | ND        | ND      | NÐ      | ND      | ND             |
| 9  | Dieldrin µ             | lg/kg                | ND      | ND      | ND      | ND      | ND      | ND        | ND      | ND      | ND      | ND             |
| 10 | Endosulfan I 🛛 🗸 🗸     | ıg/kg                | ND      | ND      | ND      | ND      | ND      | ND        | ND      | ND      | ND      | ND             |
| 11 | Endosulfan It 🛛 🛛 🕮    | ıg/kg                | ND      | ND      | ND      | ND      | ND      | ND        | ND      | ND      | ND      | ND             |
| 12 | Endosulfan sulfate 🛛 🙀 | ug/kg                | ND      | ND      | ND      | ND      | ND      | ND        | NÐ      | ND      | ND      | NĎ             |
| 13 | Endrin μ               | ug/kg                | ND      | ŇD      | ND      | ND      | ND      | ND        | ND      | ND      | ND      | ND             |
| 14 | Endrin aldehyde 🛛 🛛 🗸  | lg/kg                | ND      | ND      | ND      | ND      | ND      | ND        | ND      | ND      | ND      | ND             |
| 15 | Endrin ketone 🛛 🙀      | lg/kg                | ND      | ND      | ND      | ND      | ND      | NÐ        | ND      | ND      | ND      | ND             |
| 16 | gamma-BHC (Lindane) μ  | ig/kg                | 0.934 J | ND      | 56.5    | 2.41    | ND      | ND        | ND      | ND      | ND      | 1.1 J          |
| 17 | gamma-Chlordane µ      | lg/kg                | ND      | ND      | ND      | ND      | ND      | ND        | ND      | ND      | ND      | ND             |
| 18 | Heptachlor µ           | g/kg                 | ND      | ND      | ND      | ND      | ND      | ND        | ND      | ND      | ND      | NÐ             |
| 19 | Heptachlor epoxide 🛛 🙀 | g/kg                 | ND      | ND      | NÐ      | ND      | ND      | ND        | ND      | ND      | ND      | ND             |
| 20 | Methoxychlor µ         | g/kg                 | ND      | ND      | ND      | ND      | ND      | ND        | ND      | ND      | ND      | NÐ             |
| 21 | Toxaphene µ            | g/kg                 | ND      | ND      | ND      | ND      | ND      | ND        | ND      | ND      | ND      | ND             |

#### NOTES:

J: Estimated amount between the detection limit and reporting limit R: Data rejected

3360

. •

|    |                     | Borehole →              | E11-191 | E11-191 | E11-191 | E11-191 | E11-192   | E11-192 | E11-192 | E11-192   | E11-193 | E11-193 |
|----|---------------------|-------------------------|---------|---------|---------|---------|-----------|---------|---------|-----------|---------|---------|
| No | S                   | Sample ID $\rightarrow$ | S1      | 52      | \$3     | S4      | <b>Š1</b> | S2      | \$3     | <b>S4</b> | 51      | S2      |
|    | Analyte↓            | Depth, m →              | 0.0~0.5 | ~2.0    | ~5.0    | ~7,7    | 0.0~0,5   | ~2.0    | ~5.0    | ~10.0     | 0.0~0,5 | ~2.0    |
| 1  | 4,4'-DDD            | µg/kg                   | 2.46    | 4560    | 23.8    | 207     | ND        | 1.4 J   | 12,7    | 0.972 J   | 2.64    | 7,34    |
| 2  | 4,4'-DDE            | µg/kg                   | 2,58    | ND      | 0.925 J | 8.51    | ND        | 1.37 J  | 21.8    | ND        | 4,88    | 10.2    |
| 3  | 4,4'-DDT            | µg/kg                   | 5,39    | 20000   | 129     | 1220    | ND        | 3.04    | 95.9    | 8         | 16      | 41      |
| 4  | Aldrin              | µg/kg                   | ND      | ND      | ND      | ND      | ND        | ND      | ND      | ND        | ND      | ND      |
| 5  | alpha-BHC           | µg/kg                   | ND      | ND      | ND      | ND      | ND        | ND      | ND      | ND        | ND      | ND      |
| 6  | alpha-Chlordane     | µg/kg                   | ND      | ND      | ND      | ND      | ND        | ND      | 0,607 J | ND        | ND      | ND      |
| 7  | beta-BHC            | µg/kg                   | ND      | ND      | NÐ      | ND      | ND        | ND      | ND      | ND        | ND      | ND      |
| 8  | delta-BHC           | µg/kg                   | ND      | 1.29 J  | ND      | ND      | ND        | ND      | ND      | ND        | ND      | ND      |
| 9  | Dieldrin            | µg/kg                   | ND      | ND      | ND      | ND      | ND        | ND      | 0.772 J | ND        | ND      | ND      |
| 10 | Endosulfan I        | µg/kg                   | ND      | ND      | ND      | ND      | ND        | ND      | ND      | ND        | ND      | ND      |
| 11 | Endosulfan II       | µg/kg                   | ND      | ND R    | ND      | ND      | ND        | ND      | ND      | ND        | ND      | NÐ      |
| 12 | Endosulfan sulfate  | µg/kg                   | ND      | ND      | ND      | ND      | ND        | ND      | ND      | NÐ        | ND      | ND      |
| 13 | Endrin              | µg/kg                   | ND      | ND R    | ND      | ND      | ND        | ND      | ND      | ND        | ND      | ND      |
| 14 | Endrin aldehyde     | µg/kg                   | ND      | ND      | ND      | ND      | ND        | NÐ      | ND      | ND        | ND      | ND      |
| 15 | Endrin ketone       | µg/kg                   | ND      | ND      | ND      | ND      | ND        | ND      | ND      | ND        | ND      | ND      |
| 16 | gamma-BHC (Lindane) | µg/kg                   | ND      | 2.88    | ND      | 0.778 J | ND        | ND      | 0.987 J | ND        | ND      | ND      |
| 17 | gamma-Chlordane     | µg/kg                   | ND      | ND      | NÐ      | ND      | ND        | ND      | 0.709 J | ND        | ND      | ND      |
| 18 | Heptachlor          | µg/kg                   | ND      | ND      | ND      | ND      | ND        | ND      | ND      | ND        | ND      | ND      |
| 19 | Heptachlor epoxide  | µg/kg                   | ND      | ND      | ND      | ND      | ND        | ND      | ND      | ND        | ND      | ND      |
| 20 | Methoxychlor        | µg/kg                   | ND      | ND      | ND      | ND      | ND        | ND      | ND      | ND        | ND      | ND      |
| 21 | Toxaphene           | µg/kg                   | ND      | ND      | ND      | ND      | ND        | ND      | ND      | ND        | ND      | ND      |

#### NOTES:

J: Estimated amount between the detection limit and reporting limit

R: Data rejected

3361

.

|    |                     | Borehole <del>&gt;</del> | E11-193 | E11-193 | E11-194 | E11-194    | E11-194 | E11-194 | E11-195 | E11-195 | E11-195 | E11-195 |
|----|---------------------|--------------------------|---------|---------|---------|------------|---------|---------|---------|---------|---------|---------|
| No | S                   | iample ID $\rightarrow$  | S3      | \$4     | S1      | <b>\$2</b> | S3      | 54      | S1      | S2      | 53      | S4      |
|    | Analyte↓            | Depth, m →               | ∾5.0    | ~8.6    | 0,3~0.8 | ~2.0       | ~5.0    | ~10.0   | 0.3~0.8 | ~2.0    | ~5.0    | ~10.0   |
| 1  | 4,4'-DDD            | µg/kg                    | ND      | ND      | 1.49 J  | ND         | ND      | ND      | ND      | ND      | ND      | ND      |
| 2  | 4,4'-DDE            | µg/kg                    | ND      | NÐ      | 2.09 J  | NÐ         | ND      | ND      | 1.41 J  | ND      | ND      | ND      |
| 3  | 4,4'-DDT            | μg/kg                    | 1.11 Į  | ND      | ND      | ND         | ND      | NÐ      | 1.31 J  | ND      | ND      | ND      |
| 4  | Aldrin              | µg/kg                    | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND      | ND      |
| 5  | alpha-BHC           | µg/kg                    | ND      | ND      | ND      | ND         | ND      | ND      | NĎ      | ND      | NÐ      | ND      |
| 6  | alpha-Chlordane     | µg/kg                    | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND      | ND      |
| 7  | beta-BHC            | µg/kg                    | ND      | ND      | ND      | ND         | NÐ      | ND      | ND      | ND      | ND      | ND      |
| 8  | delta-BHC           | µg/kg                    | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND      | ND      |
| 9  | Dieldrin            | µg/kg                    | ND      | ND      | ND      | ND         | ND      | ND      | ND      | NÐ      | ND      | ND      |
| 10 | Endosulfan I        | µg/kg                    | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND      | ND      |
| 11 | Endosulfan II       | µg/kg                    | ND      | ND      | NÐ      | ND         | ND      | ND      | ND      | ND      | ND      | ND      |
| 12 | Endosulfan sulfate  | µg/kg                    | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND      | ND      |
| 13 | Endrin              | µg/kg                    | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND      | ND      |
| 14 | Endrin aldehyde     | µg/kg                    | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND      | ND      |
| 15 | Endrin ketone       | µg/kg                    | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND      | ND      |
| 16 | gamma-BHC (Lindane) | µg/kg                    | ND      | 0,76 J  | NÐ      | NÐ         | ND      | ND      | ND      | ND      | ND      | ND      |
| 17 | gamma-Chiordane     | µg/kg                    | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND      | ND      |
| 18 | Heptachlor          | µg/kg                    | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND      | ND      |
| 19 | Heptachlor epoxide  | µg/kg                    | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND      | ND      |
| 20 | Methoxychlor        | µg/kg                    | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND      | ND      |
| 21 | Toxaphene           | µg/kg                    | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND      | ND      |

#### NOTES:

J: Estimated amount between the detection limit and reporting limit

R: Data rejected

3362

s

|    |                     | Borehole →              | E11-196 | E11-196 | E11-196   | E11-196    |
|----|---------------------|-------------------------|---------|---------|-----------|------------|
| No |                     | Sample ID $\rightarrow$ | S1      | S2      | <b>S3</b> | <b>\$4</b> |
|    | Analyte↓            | Depth, m →              | 0.3~0.8 | ~2,3    | ~5.3      | ~10.3      |
| 1  | 4,4'-DDD            | μg/kg                   | 3.86    | ND      | ND        | ND         |
| 2  | 4,4'-DDE            | µg/kg                   | 9,1     | ND      | ND        | ND         |
| 3  | 4,4'-DDT            | µg/kg                   | 21.1    | ND      | ND        | ND         |
| 4  | Aldrin              | μg/kg                   | ND      | ND      | ND        | ND         |
| 5  | alpha-BHC           | µg/kg                   | ND      | ND      | ND        | ND         |
| 6  | alpha-Chiordane     | μg/kg                   | ND      | ND      | ND        | ND         |
| 7  | beta-BHC            | µg/kg                   | ND      | ND      | ND        | ND         |
| 8  | delta-BHC           | µg/kg                   | ND      | ND      | ND        | ND         |
| 9  | Dieldrin            | μg/kg                   | ND      | ND      | ND        | ND         |
| 10 | Endosulfan I        | µg/kg                   | ND      | ND      | ND R      | ND         |
| 11 | Endosulfan II       | µg/kg                   | ND      | ND      | ND        | ND         |
| 12 | Endosulfan sulfate  | µg/kg                   | ND      | ND      | ND        | ND         |
| 13 | Endrin              | μg/kg                   | ND      | ND      | ND        | ND         |
| 14 | Endrin aldehyde     | µg/kg                   | ND      | ND      | ND        | ND         |
| 15 | Endrin ketone       | µg/kg                   | NÐ      | ND      | ND        | ND         |
| 16 | gamma-BHC (Lindane) | µg/kg                   | ND      | ND      | ND        | ND         |
| 17 | gamma-Chlordane     | µg/kg                   | ND      | ND      | ND        | ND         |
| 18 | Heptachlor          | μg/kg                   | ND      | ND      | ND        | NÐ         |
| 19 | Heptachlor epoxide  | µg/kg                   | ND      | ND      | ND        | ND         |
| 20 | Methoxychlor        | µg/kg                   | ND      | ND      | ND        | ND         |
| 21 | Toxaphene           | µg/kg                   | ND      | ND      | ND        | ND         |

3363

#### NOTES:

J: Estimated amount between the detection limit and reporting limit

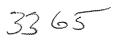
R: Data rejected

|    |                          | Borehole →              | E11-154 | E11-154 | E11-155 | E11-155    | E11-156 | E11-156 | E11-156 | E11-157 | E11-157 | E11-157 |
|----|--------------------------|-------------------------|---------|---------|---------|------------|---------|---------|---------|---------|---------|---------|
| No |                          | Sample ID $\rightarrow$ | S1      | S2      | S1      | <b>\$2</b> | S1      | S2      | S3      | S1      | S2      | S3      |
|    | Analyte↓                 | Depth, m $\rightarrow$  | 0.0~0.5 | ~2.3    | 0.0~0.5 | ~1.8       | 0.0~0.5 | ~2.0    | ~6.45   | 0.0~0.5 | ~2.0    | ~4.5    |
| 1  | Bolstar                  | μg/kg                   | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND      | ND      |
| 2  | Chlorpyrifos             | µg/kg                   | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND      | ND      |
| 3  | Coumaphos                | μg/kg                   | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND      | ND      |
| 4  | Demeton                  | µg/kg                   | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND      | ND      |
| 5  | Diazinon                 | µg/kg                   | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND      | ND      |
| 6  | Dichlorvos               | µg/kg                   | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND      | ND      |
| 7  | Dimethoate               | µg/kg                   | ND      | ND      | ND      | NĎ         | ND      | ND      | ND      | ND      | ND      | ND      |
| 8  | Disulfoton               | µg/kg                   | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND      | ND      |
| 9  | EPN                      | µg/kg                   | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND      | ND      |
| 10 | Ethoprop                 | µg/kg                   | ND      | ND      | ND      | ND         | ND      | ND      | ND      | NÐ      | ND      | ND      |
| 11 | Ethyl Parathion          | µg/kg                   | ND      | ND      | ND      | NÐ         | ND      | ND      | ND      | NÐ      | ND      | ND      |
| 12 | Fensulfothion            | µg/kg                   | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND      | ND      |
| 13 | Fenthion                 | µg/kg                   | NÐ      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND      | ND      |
| 14 | Malathion                | µg/kg                   | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND      | ND      |
| 15 | Methyl Azinphos(Guthion) | μg/kg                   | NÐ      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND      | ND      |
| 16 | Methyl Parathion         | µg/kg                   | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND      | ND      |
| 17 | Merphos                  | µg/kg                   | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND      | ND      |
| 18 | Mevinphos                | µg/kg                   | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND      | ND      |
| 19 | Monocrotophos            | μg/kg                   | ND      | ND R    | ND      | ND         | ND      | ND      | ND      | ND      | ND      | ND      |
| 20 | Naled                    | µg/kg                   | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND      | ND      |
| 21 | Phorate                  | µg/kg                   | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND      | ND      |
| 22 | Ronnel                   | μg/kg                   | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND      | ND      |
| 23 | Sulfotep                 | μg/kg                   | NU      | NU      | NU      | NÐ         | ND      | ND      | ND      | NŬ      | ND      | ND      |
|    | Stirophos                | µg/kg                   | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND      | ND      |
| 25 | ТЕРР                     | μg/kg                   | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND      | ND      |
| 26 | Tokuthion                | μg/kg                   | ND      | NÐ      | ND      | ND         | ND      | ND      | ND      | ND      | ND      | ND      |
| 27 | Trichloronate            | µg/kg                   | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND      | ND      |

# Table 6. Summary of Organophosphorus Pesticide Results for Phase II and IIb Soil Samples

NOTES:

R: Data rejected


ND: Not detected

|    |                          | Borehole →             | E11-158 | E11-158 | E11-158 | E11-158 | E11-159 | E11-159 | E11-159 | E11-159 | E11-160 | E11-160 |
|----|--------------------------|------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| No |                          | Sample ID →            | S1      | S2      | 53      | S4      | \$1     | S2      | \$3     | 54      | S1      | S2      |
|    | Analyte 🗸                | Depth, m $\rightarrow$ | 0,0~0.5 | ~2.0    | ~5.0    | ~8.5    | 0.0~0.5 | ~2.0    | ~5.0    | ~10.0   | 0.0~0.5 | ~2,0    |
| 1  | Bolstar                  | µg/kg                  | ND      | ND      | ND      | NÐ      | ND      | ND      | ND      | ND      | NÐ      | ND      |
| 2  | Chlorpyrifos             | µg/kg                  | ND      |
| 3  | Coumaphos                | µg/kg                  | ND      |
| 4  | Demeton                  | µg/kg                  | ND      |
| 5  | Diazinon                 | µg/kg                  | ND      | NÐ      | ND      |
|    | Dichlorvos               | µg/kg                  | ND      |
|    | Dimethoate               | µg/kg                  | ND      | ND      | ND      | ND      | ŇĎ      | ND      | ND      | ND      | ND      | ND      |
| 8  | Disulfoton               | µg/kg                  | NÐ      | ND      |
| 9  | EPN                      | µg/kg                  | ND      | ND      | ND      | NÐ      | ND      | ND      | ND      | ND      | ND      | ND      |
| 10 | Ethoprop                 | µg/kg                  | ND      |
|    | Ethyl Parathion          | µg/kg                  | ND      |
|    | Fensulfothion            | µg/kg                  | ND      |
| 13 | Fenthion                 | µg/kg                  | ND      |
|    | Malathion                | µg/kg                  | ND      |
| 15 | Methyl Azinphos(Guthion) | µg/kg                  | ND      | NÐ      | ND      |
|    | Methyl Parathion         | µg/kg                  | ND      |
|    | Merphos                  | µg/kg                  | ND      | ND      | ND      | NÐ      | ND      | ND      | ND      | ND      | ND      | ND      |
| _  | Mevinphos                | µg/kg                  | ND      | ND      | ND      | ND      | NÐ      | ND      | ND      | ND      | ND      | ND      |
|    | Monocrotophos            | µg/kg                  | ND      | ND R    |
|    | Naled                    | µg/kg                  | ND      |
|    | Phorate                  | µg/kg                  | ND      | ND      | NĎ      | ND      | ND      | ND      | NÐ      | ND      | ND      | ND      |
|    | Ronnel                   | µg/kg                  | ND      | ND      | ND      | ND      | ND      | ND      | NÐ      | ND      | ND      | ND      |
| 23 | Sulfotep                 | µg/kg                  | ND      | ND      | NÜ      | ND      | ND      | NŬ      | ND      | NÜ      | ND      | ND      |
|    | Stirophos                | µg/kg                  | ND      |
|    | ТЕРР                     | µg/kg                  | ND      |
|    | Tokuthion                | µg/kg                  | ND      | ND      | ND      | ND      | ND      | ND      | NÐ      | ND      | ND      | ND      |
| 27 | Trichloronate            | µg/kg                  | ND      |

NOTES:

R: Data rejected

ND: Not detected



|     |                          | Sorehole →  | E11-160 | E11-161   | E11-161   | E11-161 | E11-161 | E11-162 | E11-162 | E11-163 | E11-163 | E11-163    |
|-----|--------------------------|-------------|---------|-----------|-----------|---------|---------|---------|---------|---------|---------|------------|
| No  |                          | Sample ID → | S3      | <b>S1</b> | <b>S2</b> | S3      | S4      | S1      | S2      | S1      | S2      | <b>S</b> 3 |
| 999 | Analyte↓                 | Depth, m →  | ~3.4    | 0.0~0.5   | ~2,0      | ~5.0    | ~7,9    | 0.0~0.5 | ~1.52   | 0.0~0.5 | ~2.0    | ~5,0       |
| 1   | Bolstar                  | µg/kg       | ND      | ND        | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND         |
| 2   | Chlorpyrifos             | μg/kg       | ND      | ND        | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND         |
| 3   | Coumaphos                | µg/kg       | ND      | ND        | ND        | ND      | ND      | ND      | ND      | ND      | ND      | NÐ         |
| 4   | Demeton                  | µg/kg       | ND      | ND        | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND         |
| 5   | Diazinon                 | µg/kg       | ND      | ND        | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND         |
| 6   | Dichlorvos               | μg/kg       | ND      | ND        | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND         |
| 7   | Dimethoate               | µg/kg       | ND      | ND        | ND        | ND      | ND      | ND      | ND      | NÐ      | ND      | ND         |
| 8   | Disulfoton               | µg/kg       | ND      | ND        | NÐ        | ND         |
| 9   | EPN                      | µg/kg       | ND      | ND        | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND         |
| 10  | Ethoprop                 | µg/kg       | ND      | ND        | ND        | ND      | ND      | ND      | NÐ      | ND      | ND      | ND         |
| 11  | Ethyl Parathion          | μg/kg       | ND      | ND        | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND         |
|     | Fensulfothion            | µg/kg       | ND      | ND        | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND         |
|     | Fenthion                 | µg/kg       | ND      | ND        | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND         |
|     | Malathion                | μg/kg       | ND      | ND        | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND         |
|     | Methyl Azinphos(Guthion) | µg/kg       | ND      | ND        | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND         |
|     | Methyl Parathion         | µg/kg       | ND      | ND        | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND         |
|     | Merphos                  | µg/kg       | ND      | ND        | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND         |
| 18  | Mevinphos                | μg/kg       | ND      | ND        | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND         |
|     | Monocrotophos            | µg/kg       | ND      | ND        | ND        | ND      | ND      | ND      | NÐ      | ND      | ND      | ND         |
|     | Naled                    | μg/kg       | ND      | ND        | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND         |
|     | Phorate                  | µg/kg       | ND      | ND        | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND         |
|     | Ronnel                   | µg/kg       | ND      | ND        | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND         |
| 23  | Sulfotep                 | µg/kg       | ND      | ND        | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND         |
|     | Stirophos                | μg/kg       | ND      | ND        | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND         |
| _   | TEPP                     | μg/kg       | ND      | ND        | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND         |
|     | Tokuthion                | µg/kg       | ND      | ND        | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND         |
| 27  | Trichioronate            | µg/kg       | ND      | ND        | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND         |

z

NOTES:

R: Data rejected

ND: Not detected

|    |                          | Borehole →  | E11-163 | E11-164 | E11-164 | E11-164 | E11-164 | E11-165 | E11-165 | E11-165 | E11-165 | E11-166 |
|----|--------------------------|-------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| No |                          | Sample ID → | S4      | S1      | S2      | S3      | S4      | S1      | S2      | S3      | S4      | S1      |
|    | Analyte J                | Depth, m →  | ~10.0   | 0.0~0.5 | ~2.0    | ~5,0    | ~11.0   | 0.0~0.5 | ~2.0    | ~5.0    | ~10.0   | 0.3~0.8 |
| 1  | Bolstar                  | μg/kg       | ND      |
| 2  | Chlorpyrifos             | μg/kg       | ND      |
| 3  | Coumaphos                | µg/kg       | ND      |
| 4  | Demeton                  | μg/kg       | ND      |
| 5  | Diazinon                 | µg/kg       | ND      |
| 6  | Dichlorvos               | μg/kg       | ND      |
| 7  | Dimethoate               | µg/kg       | ND      |
| 8  | Disulfoton               | µg/kg       | ND      |
| 9  | EPN                      | µg/kg       | ND      | NĎ      | ND      | ND      | ND      | NÐ      | ND      | ND      | ND      | ND      |
| 10 | Ethoprop                 | μg/kg       | ND      |
| 11 | Ethyl Parathion          | µg/kg       | ND      |
| 12 | Fensulfothion            | µg/kg       | ND      |
| 13 | Fenthion                 | µg/kg       | ND      | ND      | ND      | ND      | ND      | NÐ      | ND      | ND      | ND      | ND      |
| 14 | Malathion                | μg/kg       | ND      | ND      | ND      | NÐ      | ND      | NÐ      | NÐ      | ND      | ND      | ND      |
| 15 | Methyl Azinphos(Guthion) | μg/kg       | ND      |
| 16 | Methyl Parathion         | µg/kg       | ND      |
| 17 | Merphos                  | µg/kg       | ND      |
| 18 | Mevinphos                | μg/kg       | ND      | NÐ      |
| 19 | Monocrotophos            | µg/kg       | ND      |
| 20 | Naled                    | µg/kg       | ND      |
| 21 | Phorate                  | µg/kg       | ND      | ND      | ND      | NÐ      | ND      | ND      | ND      | ND      | ND      | ND      |
| 22 | Ronnel                   | μg/kg       | ND      | ND      | ND      | ND      | ND      | NÐ      | ND      | ND      | ND      | ND      |
| 23 | Sulfotep                 | µg/kg       | ND      |
| 24 | Stirophos                | µg/kg       | ND      |
| 25 | TEPP                     | µg/kg       | ND      |
| 26 | Tokuthion                | µg/kg       | ND      |
| 27 | Trichloronate            | µg/kg       | ND      |

····· · · · · ·

NOTES:

R: Data rejected

ND: Not detected

|    |                          | $\exists orehole \rightarrow$ | E11-166 | E11-167 | E11-167 | E11-167 | E11-168 | E11-168    | E11-169 | E11-169 | E11-170 | E11-170 |
|----|--------------------------|-------------------------------|---------|---------|---------|---------|---------|------------|---------|---------|---------|---------|
| No |                          | Sample ID $\rightarrow$       | S2      | S1      | S2      | S3      | S1      | <b>\$2</b> | \$1     | S2      | S1      | S2      |
|    | Analyte↓                 | Depth, m →                    | 2.7     | 0.0~0.5 | ~2.0    | ~5.5    | 0.0~0.5 | ~3.0       | 0.0~0.5 | ~1,8    | 0.0~0.5 | ~2.0    |
| 1  | Bolstar                  | μg/kg                         | ND      | ND      | ND      | ND      | ND      | ND         | ND      | ND      | NÐ      | ND      |
| 2  | Chlorpyrifos             | µg/kg                         | NÐ      | ND      | ND      | ND      | ND      | ND         | NÐ      | ND      | ND      | ND      |
| 3  | Coumaphos                | μg/kg                         | ND      | ND      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      |
| 4  | Demeton                  | µg/kg                         | ND      | ND      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      |
| 5  | Diazinon                 | µg/kg                         | ND      | NÐ      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      |
| 6  | Dichlorvos               | µg/kg                         | ND      | ND      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      |
| 7  | Dimethoate               | µg/kg                         | ND      | ND      | ND      | ND      | ND      | ND         | NÐ      | ND      | ND      | ND      |
| 8  | Disulfoton               | µg/kg                         | ND      | ND      | ND      | NÐ      | ND      | ND         | ND      | ND      | ND      | ND      |
| 9  | EPN                      | µg/kg                         | ND      | ND      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      |
| 10 | Ethoprop                 | µg/kg                         | NÐ      | ND      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      |
| 11 | Ethyl Parathion          | μg/kg                         | ND      | ND      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      |
| 12 | Fensulfothion            | μg/kg                         | ND      | ND      | ND      | ND      | ND      | ND         | ND      | NÐ      | ND      | ND      |
| 13 | Fenthion                 | µg/kg                         | ND      | ND      | ND      | ND      | NÐ      | ND         | ND      | ND      | ND      | ND      |
| 14 | Malathion                | µg/kg                         | ND      | ND      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      |
| 15 | Methyl Azinphos(Guthion) | µg/kg                         | ND      | ND      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      |
| 16 | Methyl Parathion         | µg/kg                         | ND      | ND      | ND      | ND      | ND      | ND         | NÐ      | ND      | ND      | ND      |
| 17 | Merphos                  | µg/kg                         | ND      | ND      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      |
| 18 | Mevinphos                | μg/kg                         | ND      | ND      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      |
| 19 | Monocrotophos            | µg/kg                         | NĎ      | ND      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      |
| 20 | Naled                    | µg/kg                         | ND      | ND      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      |
| 21 | Phorate                  | µg/kg                         | ND      | ND      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      |
| 22 | Ronnel                   | µg/kg                         | NÜ      | ND      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      |
| 23 | Sulfotep                 | µg/kg                         | ND      | ND      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      |
| _  | Stirophos                | µg/kg                         | ND      | ND      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      |
|    | TEPP                     | µg/kg                         | ND      | ND      | ND      | ND      | ND      | ND         | ND      | NÐ      | ND      | ND      |
| 26 | Tokuthion                | µg/kg                         | ND      | ND      | ND      | NÐ      | ND      | ND         | ND      | ND      | ND      | ND      |
| 27 | Trichloronate            | µg/kg                         | ND      | ND      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      |

NOTES:

R: Data rejected

ND: Not detected

3368

,

|    |                          | Borehole →              | E11-170 | E11-170 | E11-171 | E11-171 | E11-171 | E11-172 | E11-172 | E11-172 | E11-172 | E11-173 |
|----|--------------------------|-------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| No |                          | Sample ID $\rightarrow$ | S3      | S4      | S1      | S2      | S3      | S1      | \$2     | 53      | S4      | S1      |
|    | Analyte↓                 | Depth, m →              | ~5.0    | ~7.5    | 0.0~0.5 | ~2.0    | ~6.5    | 0.0~0.5 | ~2,0    | ~5.0    | ~8.7    | 0.0~0.5 |
| 1  | Bolstar                  | µg/kg                   | ND      | NÐ      | ND      |
| 2  | Chlorpyrifos             | μg/kg                   | ND      |
| 3  | Coumaphos                | µg/kg                   | ND      | ND      | NÐ      | ND      | ND      | ND      | NÐ      | ND      | ND      | ND      |
| 4  | Demeton                  | µg/kg                   | ND      |
| 5  | Diazinon                 | µg/kg                   | ND      | ND      | ND      | ND      | ND      | NÐ      | ND      | ND      | ND      | ND      |
| 6  | Dichlorvos               | μg/kg                   | ND      |
| 7  | Dimethoate               | µg/kg                   | ND      |
| 8  | Disulfoton               | µg/kg                   | ND      |
| 9  | EPN                      | µg/kg                   | ND      | ND      | ND      | ND      | NÐ      | ND      | ND      | NÐ      | ND      | ND      |
| 10 | Ethoprop                 | µg/kg                   | ND      | NÐ      | ND      |
| 11 | Ethyl Parathion          | µg/kg                   | ND      |
| 12 | Fensulfothion            | µg/kg                   | ND      | NĎ      | ND      | ND      |
| 13 | Fenthion                 | μg/kg                   | ND      |
| 14 | Malathion                | µg/kg                   | ND      |
| 15 | Methyl Azinphos(Guthion) | µg/kg                   | ND      |
| 16 | Methyl Parathion         | µg/kg                   | ND      |
| 17 | Merphos                  | µg/kg                   | ND      |
| 18 | Mevinphos                | µg/kg                   | ND      | ND      | ND      | ND      | NÐ      | ND      | ND      | ND      | ND      | NÐ      |
| 19 | Monocrotophos            | µg/kg                   | ND      | ND      | ND      | NÐ      | ND      | ND      | ND      | ND      | ND R    | ND      |
| 20 | Naled                    | µg/kg                   | ND      |
| 21 | Phorate                  | µg/kg                   | ND      | ND      | ND      | ND      | ND      | ND      | NÐ      | ND      | ND      | ND      |
| 22 | Ronnel                   | µg/kg                   | ND      |
| 23 | Sulfotep                 | µg/kg                   | ND      |
| -  | Stirophos                | µg/kg                   | ND      |
| 25 | ТЕРР                     | µg/kg                   | ND      | ND R    | ND      |
| 26 | Tokuthion                | µg/kg                   | ND      | NĎ      | ND      | ND      | ND      | ND      | NÐ      | ND      | ND      | ND      |
| 27 | Trichloronate            | µg/kg                   | ND      |

NOTES:

R: Data rejected

NU: Not detected

.

|    | Contraction and the second | Borehole →              | E11-173 | E11-173 | E11-173 | E11-174 | E11-174 | E11-174 | E11-174 | E11-175 | E11-175 | E11-175 |
|----|----------------------------------------------------------------------------------------------------------------|-------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| No |                                                                                                                | Sample ID $\rightarrow$ | S2      | S3      | S4      | S1      | S2      | S3      | S4      | S1      | S2      | S3      |
|    | Analyte↓                                                                                                       | Depth, m $\rightarrow$  | ~2.0    | ~5.0    | ~10.0   | 0.3~0.8 | ~2.3    | 2.3~5.3 | ~8.9    | 0.0~0.5 | ~2.0    | ~5.0    |
| 1  | Bolstar                                                                                                        | µg/kg                   | ND      | NÐ      | ND      | ND      |
| 2  | Chlorpyrifos                                                                                                   | µg/kg                   | ND      | ND      | ND      | NÐ      | ND      | ND      | ND      | ND      | ND      | ND      |
| 3  | Coumaphos                                                                                                      | µg/kg                   | ND      |
| 4  | Demeton                                                                                                        | µg/kg                   | ND      |
| 5  | Diazinon                                                                                                       | µg/kg                   | ND      | NÐ      |
| 6  | Dichlorvos                                                                                                     | µg/kg                   | ND      |
| 7  | Dimethoate                                                                                                     | µg/kg                   | ND      | NÐ      | ND      | ND      |
| 8  | Disulfoton                                                                                                     | µg/kg                   | ND      |
| 9  | EPN                                                                                                            | µg/kg                   | ND      |
| 10 | Ethoprop                                                                                                       | µg/kg                   | ND      |
| 11 | Ethyl Parathion                                                                                                | µg/kg                   | ND      |
| 12 | Fensulfothion                                                                                                  | µg/kg                   | ND      | NĎ      |
| 13 | Fenthion                                                                                                       | µg/kg                   | ND      | NĎ      |
| 14 | Malathion                                                                                                      | µg/kg                   | ND      | NĎ      | ND      |
| 15 | Methyl Azinphos(Guthion)                                                                                       | μg/kg                   | ND      |
| 16 | Methyl Parathion                                                                                               | µg/kg                   | ND      | NÐ      |
| 17 | Merphos                                                                                                        | µg/kg                   | ND      |
|    | Mevinphos                                                                                                      | µg/kg                   | ND      |
| 19 | Monocrotophos                                                                                                  | µg/kg                   | ND      | NÐ      | ND      |
| 20 | Naled                                                                                                          | µg/kg                   | NÐ      | ND      |
| 21 | Phorate                                                                                                        | µg/kg                   | ND      |
| 22 | Ronnel                                                                                                         | µg/kg                   | ND      |
| 23 | Sulfotep                                                                                                       | µg/kg                   | ND      |
| 24 | Stirophos                                                                                                      | μg/kg                   | ND      |
|    | ТЕРР                                                                                                           | μg/kg                   | ND      |
| 26 | Tokuthion                                                                                                      | µg/kg                   | ND      |
| 27 | Trichloronate                                                                                                  | µg/kg                   | ND      |

NOTES:

R: Data rejected

ND: Not detected

3370

\$

|    |                          | Borehole →              | E11-175 | E11-176 | E11-176 | E11-176 | E11-176 | E11-177 | E11-177 | E11-177 | E11-177    | E11-178 |
|----|--------------------------|-------------------------|---------|---------|---------|---------|---------|---------|---------|---------|------------|---------|
| No |                          | Sample ID $\rightarrow$ | S4      | S1      | S2      | S3      | S4      | S1      | S2      | 53      | <u>\$4</u> | S1      |
|    | Analyte↓                 | Depth, m →              | ~7,25   | 0.0~0.5 | ~2.0    | ~5.0    | ~10.0   | 0.4~0.9 | ~2.4    | ~5.4    | ~9.0       | 0.0~0.5 |
| 1  | Bolstar                  | μg/kg                   | ND         | ND      |
| 2  | Chlorpyrifos             | µg/kg                   | ND         | ND      |
| 3  | Coumaphos                | µg/kg                   | ND         | ND      |
| 4  | Demeton                  | µg/kg                   | ND         | ND      |
| 5  | Diazinon                 | µg/kg                   | ND         | ND      |
| 6  | Dichlorvos               | µg/kg                   | ND         | ND      |
| 7  | Dimethoate               | µg/kg                   | ND         | ND      |
| 8  | Disulfoton               | μg/kg                   | ND         | ND      |
| 9  | EPN                      | µg/kg                   | ND         | ND      |
| 10 | Ethoprop                 | μg/kg                   | ND      | ND .       | ND      |
| 11 | Ethyl Parathion          | µg/kg                   | ND         | ND      |
| 12 | Fensulfothion            | µg/kg                   | ND         | ND      |
| 13 | Fenthion                 | µg/kg                   | ND      | ND      | ND      | NÐ      | ND      | ND      | ND      | ND      | ND         | ND      |
| 14 | Malathion                | µg/kg                   | ND         | ND      |
| 15 | Methyl Azinphos(Guthion) | µg/kg                   | NÐ      | ND         | ND      |
| 16 | Methyl Parathion         | μg/kg                   | ND         | ND      |
| 17 | Merphos                  | µg/kg                   | ND         | ND      |
| 18 | Mevinphos                | µg/kg                   | ND         | ND      |
| 19 | Monocrotophos            | µg/kg                   | NÐ      | ND         | ND      |
| 20 | Naled                    | µg/kg                   | ND      | NĎ      | ND         | ND      |
| 21 | Phorate                  | µg/kg                   | ND      | ND      | ND      | ND      | ND      | ND      | NÐ      | ND      | ND         | ND      |
| 22 | Ronnel                   | µg/kg                   | NÐ      | ND         | ND      |
| 23 | Sulfotep                 | µg/kg                   | ND         | ND      |
|    | Stirophos                | µg/kg                   | ND         | ND      |
| 25 | ТЕРР                     | µg/kg                   | ND         | ND      |
| 26 | Tokuthion                | µg/kg                   | ND      | ND      | ND      | ND      | ND      | ND      | NÐ      | NÐ      | ND         | ND      |
| 27 | Trichloronate            | μg/kg                   | ND         | ND      |

NOTES:

R: Data rejected

ND: Not detected

|    |                          | Borehole →  | E11-178 | E11-178 | E11-178 | E11-179   | E11-179 | E11-179 | E11-179 | E11-180 | E11-180 | E11-180 |
|----|--------------------------|-------------|---------|---------|---------|-----------|---------|---------|---------|---------|---------|---------|
| No |                          | Sample ID → | S2      | \$3     | S4      | <b>S1</b> | S2      | S3      | S4      | S1      | S2      | S3      |
|    | Anaiyte↓                 | Depth, m →  | ~2.0    | ~5.0    | ~10.0   | 0.0~0.5   | ~2.0    | ~5.0    | ~10.0   | 0.0~0.5 | ~2.0    | ~5.0    |
| 1  | Bolstar                  | µg/kg       | ND      | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      |
| 2  | Chlorpyrifos             | µg/kg       | ND      | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      |
| 3  | Coumaphos                | μg/kg       | ND      | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      |
| 4  | Demeton                  | µg/kg       | ND      | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      |
| 5  | Diazinon                 | μg/kg       | ND      | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      |
| 6  | Dichlorvos               | µg/kg       | ND      | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      |
| 7  | Dimethoate               | μg/kg       | ND      | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      |
| 8  | Disulfoton               | µg/kg       | ND      | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      |
| 9  | EPN                      | µg/kg       | ND      | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      |
| 10 | Ethoprop                 | µg/kg       | ND      | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      |
| 11 | Ethyl Parathion          | µg/kg       | ND      | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      |
| 12 | Fensulfothion            | µg/kg       | ND      | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      |
| 13 | Fenthion                 | µg/kg       | ND      | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      |
| 14 | Malathion                | µg/kg       | ND      | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      |
| 15 | Methyl Azinphos(Guthion) | μg/kg       | ND      | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      |
| 16 | Methyl Parathion         | µg/kg       | ND      | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      |
| 17 | Merphos                  | μg/kg       | ND      | NÐ      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      |
| 18 | Mevinphos                | µg/kg       | ND      | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      |
|    | Monocrotophos            | µg/kg       | ND      | NĎ      | ND      | NÐ        | ND      | ND      | ND R    | ND      | ND      | ND      |
| 20 | Naled                    | µg/kg       | ND      | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      |
| 21 | Phorate                  | µg/kg       | ND      | ND      | ND      | ND        | ND      | ND      | ND      | ND      | NĎ      | ND      |
|    | Ronnel                   | µg/kg       | ND      | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      |
| 23 | Sulfotep                 | µg/kg       | ND      | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      |
|    | Stirophos                | µg/kg       | ND      | NÐ      | ND      | ND        | ND      | NĎ      | ND      | ND      | ND      | ND      |
|    | ТЕРР                     | µg/kg       | ND      | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      |
|    | Tokuthion                | µg/kg       | ND      | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      |
| 27 | Trichloronate            | μg/kg       | ND      | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      |

NOTES:

R: Data rejected

ND: Not detected

3372

|    |                          | Borehole →  | E11-180 | E11-181 | E11-181 | E11-181 | E11-182 | E11-182 | E11-182 | E11-182 | E11-183    | E11-183 |
|----|--------------------------|-------------|---------|---------|---------|---------|---------|---------|---------|---------|------------|---------|
| No |                          | Sample ID → | S4      | S1      | S2      | S3      | \$1     | \$2     | S3      | S4      | <b>\$1</b> | S2      |
|    | Analyte↓                 | Depth, m →  | ~10.0   | 0.0~0.5 | ~2.0    | ~5.0    | 0.0~0.5 | ~2.0    | ~5.0    | ~10.0   | 0,0~0,5    | ~2.0    |
| 1  | Bolstar                  | µg/kg       | ND         | ND      |
| 2  | Chlorpyrifos             | µg/kg       | ND         | ND      |
| 3  | Coumaphos                | μg/kg       | ND         | ND      |
| 4  | Demeton                  | µg/kg       | NÐ      | NÐ      | ND         | ND      |
| 5  | Diazinon                 | µg/kg       | ND         | ND      |
| 6  | Dichlorvos               | µg/kg       | ND         | ND      |
| 7  | Dimethoate               | μg/kg       | ND         | ND      |
| 8  | Disulfoton               | µg/kg       | ND      | NÐ      | ND         | ND      |
| 9  | EPN                      | µg/kg       | NÐ      | NÐ      | ND      | NÐ      | ND      | ND      | ND      | ND      | ND         | ND      |
| 10 | Ethoprop                 | µg/kg       | ND         | ND      |
| 11 | Ethyl Parathion          | µg/kg       | ND         | ND      |
| 12 | Fensulfothion            | µg/kg       | ND      | NÐ      | ND      | NÐ      | ND      | ND      | ND      | ND      | ND         | ND      |
| 13 | Fenthion                 | µg/kg       | ND         | ND      |
| 14 | Malathion                | µg/kg       | ND      | ND      | ND      | ND      | NÐ      | ND      | ND      | ND      | ND         | ND      |
| 15 | Methyl Azinphos(Guthion) | μg/kg       | ND         | ND      |
| 16 | Methyl Parathion         | μg/kg       | ND         | ND      |
| 17 | Merphos                  | µg/kg       | NÐ      | ND         | ND      |
| 18 | Mevinphos                | µg/kg       | ND      | ND      | ND      | NÐ      | ND      | ND      | ND      | NÐ      | ND         | ND      |
| 19 | Monocrotophos            | µg/kg       | ND         | ND      |
| 20 | Naled                    | µg/kg       | NÐ      | ND         | ND      |
| 21 | Phorate                  | µg/kg       | ND         | ND      |
| 22 | Ronnel                   | µg/kg       | ND         | ND      |
| 23 | Sulfotep                 | μg/kg       | ND [    | ND      | NÐ         | ND      |
| 24 | Stirophos                | µg/kg       | NÐ      | ND         | ND      |
|    | TEPP                     | µg/kg       | ND      | ND      | ND      | ND      | ND      | ND      | NÐ      | ND      | ND         | ND      |
|    | Tokuthion                | µg/kg       | ND         | ND      |
| 27 | Trichloronate            | μg/kg       | ND         | ND      |

NOTES:

R: Data rejected

ND: Not detected

|    |                          | Borehole →  | E11-183 | E11-183 | E11-184 | E11-184 | E11-184 | E11-184 | E11-185 | E11-185 | E11-185 | E11-185 |
|----|--------------------------|-------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| No |                          | Sample ID → | S3      | S4      | S1      | S2      | S3      | S4      | S1      | S2      | S3      | S4      |
|    | Analyte↓                 | Depth, m →  | ~5.0    | ~10.0   | 0.0~0.5 | ~2.0    | ~5,0    | ~8.75   | 0.0~0.5 | ~2,0    | ~5,0    | ~8.8    |
| 1  | Bolstar                  | µg/kg       | ND      |
| 2  | Chlorpyrifos             | µg/kg       | ND      |
| 3  | Coumaphos                | µg/kg       | ND      |
| 4  | Demeton                  | µg/kg       | ND      |
| 5  | Diazinon                 | µg/kg       | ND      |
| 6  | Dichlorvos               | µg/kg       | ND      |
| 7  | Dimethoate               | µg/kg       | ND      |
| 8  | Disulfoton               | µg/kg       | ND      |
| 9  | EPN                      | µg/kg       | ND      |
| 10 | Ethoprop                 | µg/kg       | ND      |
| 11 | Ethyl Parathion          | µg/kg       | ND      |
| 12 | Fensulfothion            | μg/kg       | ND      |
| 13 | Fenthion                 | µg/kg       | ND      | NÐ      | ND      | ND      |
| 14 | Malathion                | µg/kg       | ND      | NĎ      | ND      | ND      | ND      | ND      | ND      | NÐ      | ND      | ND      |
| 15 | Methyl Azinphos(Guthion) | µg/kg       | ND      |
| 16 | Methyl Parathion         | µg/kg       | ND      | ND      | ND      | ND      | ND      | ND      | NÐ      | ND      | ND      | ND      |
| 17 | Merphos                  | µg/kg       | ND      | ND      | ND      | ND      | NÐ      | ND      | ND      | ND      | ND      | ND      |
| 18 | Mevinphos                | µg/kg       | ND      |
| 19 | Monocrotophos            | µg/kg       | ND      |
| 20 | Naled                    | μg/kg       | ND      |
| 21 | Phorate                  | μg/kg       | ND      | ND      | ND      | NÐ      | ND      | ND      | ND      | ND      | ND      | ND      |
| 22 | Ronnel                   | µg/kg       | ND      |
| 23 | Sulfotep                 | µg/kg       | ND      |
| 24 | Stirophos                | µg/kg       | ND      |
|    | ТЕРР                     | µg/kg       | ND      |
| 26 | Tokuthion                | µg/kg       | ND      |
| 27 | Trichloronate            | µg/kg       | ND      |

NOTES:

R: Data rejected

ND. Not detected



.

|    |                          | Borehole →              | E11-186 | E11-186 | E11-186 | E11-186 | E11-187 | E11-187 | E11-187 | E11-187 | E11-188 | E11-188 |
|----|--------------------------|-------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| No |                          | Sample ID $\rightarrow$ | S1      | S2      | 53      | \$4     | \$1     | S2      | S3      | S4      | S1      | S2      |
|    | Analyte                  | Depth, m →              | 0.0~0.5 | ~2.0    | ~5.0    | ~8.0    | 0.0~0.5 | ~2.0    | ~5,0    | ~10.0   | 0,0~0.5 | ~2.0    |
| 1  | Bolstar                  | µg/kg                   | ND      |
| 2  | Chlorpyrifos             | µg/kg                   | ND      |
| 3  | Coumaphos                | μg/kg                   | ND      |
| 4  | Demeton                  | µg/kg                   | ND      |
| 5  | Diazinon                 | µg/kg                   | ND      |
| 6  | Dichlorvos               | µg/kg                   | ND      |
| 7  | Dimethoate               | µg/kg                   | ND      |
| 8  | Disulfoton               | µg/kg                   | ND      |
| 9  | EPN                      | µg/kg                   | ND      | ND      | ND      | ND      | ND      | NÐ      | ND      | ND      | ND      | ND      |
| 10 | Ethoprop                 | µg/kg                   | ND      |
| 11 | Ethyl Parathion          | µg/kg                   | ND      | ND      | ND      | ND      | ND      | ND      | NÐ      | ND      | ND      | ND      |
| 12 | Fensulfothion            | μg/kg                   | ND      |
| 13 | Fenthion                 | µg/kg                   | ND      |
| 14 | Malathion                | µg/kg                   | ND      |
| 15 | Methyl Azinphos(Guthion) | µg/kg                   | ND      |
| 16 | Methyl Parathion         | µg/kg                   | NÐ      | ND      |
| 17 | Merphos                  | µg/kg                   | ND      |
| 18 | Mevinphos                | µg/kg                   | ND      |
| 19 | Monocrotophos            | µg/kg                   | ND      | ND      | ND      | ND      | ND      | NÐ      | ND      | ND      | ND      | ND      |
| 20 | Naled                    | µg/kg                   | ND      | NÐ      | ND      | ND      |
| 21 | Phorate                  | µg/kg                   | ND      | ND .    | ND      |
| 22 | Ronnel                   | µg/kg                   | ND      |
| 23 | Sulfotep                 | µg/kg                   | ND      |
| 24 | Stirophos                | µg/kg                   | ND      |
|    | TEPP                     | µg/kg                   | ND      |
| 26 | Tokuthion                | µg/kg                   | ND      |
| 27 | Trichloronate            | µg/kg                   | ND      |

NOTES:

R: Data rejected

ND. Not detected

|      |                          | Borehole $\rightarrow$ | E11-188 | E11-188 | E11-189   | E11-189 | E11-189 | E11-189 | E11-190 | E11-190 | E11-190 | E11-190 |
|------|--------------------------|------------------------|---------|---------|-----------|---------|---------|---------|---------|---------|---------|---------|
| No   |                          | Sample ID →            | S3      | S4      | <b>S1</b> | S2      | S3      | S4      | S1      | S2      | S3      | 54      |
| 62,0 | Analyte↓                 | Depth, m $\rightarrow$ | ~5,0    | ~9.6    | 0.0~0.5   | ~2.0    | ~5.0    | ~10.0   | 0.0~0.5 | ~2.0    | ~5.0    | ~10.0   |
| 1    | Bolstar                  | µg/kg                  | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 2    | Chlorpyrifos             | µg/kg                  | NÐ      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 3    | Coumaphos                | μg/kg                  | ND      | ND      | NÐ        | ND      |
| 4    | Demeton                  | μg/kg                  | ND      | ND      | ND        | ND      | ND      | NÐ      | ND      | ND      | ND      | ND      |
| 5    | Diazinon                 | µg/kg                  | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 6    | Dichlorvos               | µg/kg                  | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 7    | Dimethoate               | μg/kg                  | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 8    | Disulfoton               | μg/kg                  | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 9    | EPN                      | µg/kg                  | ND      | ND      | ND        | NÐ      | ND      | NÐ      | ND      | ND      | ND      | ND      |
| 10   | Ethoprop                 | µg/kg                  | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 11   | Ethyl Parathion          | μg/kg                  | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 12   | Fensulfothion            | µg/kg                  | ND      | ND      | ND        | ND      | ND      | NÐ      | ND      | ND      | ND      | ND      |
| 13   | Fenthion                 | µg/kg                  | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      | NÐ      |
| 14   | Malathion                | µg/kg                  | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 15   | Methyl Azinphos(Guthion) | µg/kg                  | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 16   | Methyl Parathion         | µg/kg                  | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 17   | Merphos                  | µg/kg                  | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 18   | Mevinphos                | µg/kg                  | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 19   | Monocrotophos            | μg/kg                  | ND      | ND      | ND        | ND      | ND      | ND .    | ND      | NÐ      | ND      | ND      |
| 20   | Naled                    | µg/kg                  | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 21   | Phorate                  | µg/kg                  | ND      | ND      | ND        | ND      | ND      | NÐ      | ND      | ND      | ND      | ND      |
| 22   | Ronnel                   | µg/kg                  | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 23   | Sulfotep                 | µg/kg                  | NU      | NU      | NU        | NU      | NU      | ND      | ND      | NŬ      | ND      | ND      |
| 24   | Stirophos                | µg/kg                  | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 25   | TEPP                     | µg/kg                  | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND R    |
| 26   | Tokuthion                | µg/kg                  | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 27   | Trichloronate            | µg/kg                  | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND      |

NOTES:

R: Data rejected

ND: Not detected

|    |                          | Borehole →  | E11-191 | E11-191 | E11-191 | E11-191 | E11-192 | E11-192 | E11-192 | E11-192 | E11-193 | E11-193 |
|----|--------------------------|-------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| No |                          | Sample ID → | S1      | S2      | S3      | \$4     | S1      | S2      | S3      | S4      | S1      | S2      |
|    | Analyte↓                 | Depth, m →  | 0.0~0.5 | ~2.0    | ~5.0    | ~7.7    | 0.0~0.5 | ~2.0    | ~5.0    | ~10.0   | 0.0~0.5 | ~2.0    |
| 1  | Bolstar                  | µg/kg       | ND      |
| 2  | Chlorpyrifos             | µg/kg       | ND      |
| 3  | Coumaphos                | µg/kg       | ND      |
| 4  | Demeton                  | μg/kg       | ND      |
| 5  | Diazinon                 | µg/kg       | ND      |
| 6  | Dichlorvos               | µg/kg       | ND      |
| 7  | Dimethoate               | µg/kg       | ND      |
| 8  | Disulfoton               | μg/kg       | ND      |
| 9  | EPN                      | µg/kg       | NÐ      | ND      | ND      | ND      | ND      | ND      | NÐ      | ND      | ND      | ND      |
| 10 | Ethoprop                 | µg/kg       | ND      |
| 11 | Ethyl Parathion          | µg/kg       | ND      |
| 12 | Fensulfothion            | µg/kg       | ND      | ND      | ND      | ND      | ND      | ND      | NÐ      | ND      | ND      | ND      |
| 13 | Fenthion                 | µg/kg       | ND      |
| 14 | Malathion                | µg/kg       | ND      | ND      | ND      | ND      | ND      | NÐ      | ND      | ND      | ND      | ND      |
| 15 | Methyl Azinphos(Guthion) | µg/kg       | ND      |
| 16 | Methyl Parathion         | µg/kg       | ND      | NÐ      |
|    | Merphos                  | µg/kg       | ND      | ND      | ND      | NÐ      | ND      | ND      | ND      | ND      | ND      | ND      |
| 18 | Mevinphos                | µg/kg       | ND      |
| 19 | Monocrotophos            | μg/kg       | ND      |
| 20 | Naled                    | µg/kg       | ND      |
| 21 | Phorate                  | µg/kg       | ND      |
|    | Ronnel                   | µg/kg       | ND      | ND      | NÐ      | ND      |
| 23 | Sulfotep                 | µg/kg       | ND      | NÐ      |
|    | Stirophos                | µg/kg       | ND      | NÐ      | ND      |
|    | ТЕРР                     | µg/kg       | ND      |
|    | Tokuthion                | µg/kg       | ND      |
| 27 | Trichloronate            | μg/kg       | ND      | ND      | ND      | NÐ      | ND      | ND      | ND      | ND      | ND      | ND      |

NOTES:

R: Data rejected

ND: Not detected

|    |                          | Borehole →  | E11-193 | E11-193 | E11-194 | E11-194 | E11-194 | E11-194 | E11-195   | E11-195 | E11-195 | E11-195 |
|----|--------------------------|-------------|---------|---------|---------|---------|---------|---------|-----------|---------|---------|---------|
| No |                          | Sample ID → | S3      | S4      | S1      | S2      | S3      | S4      | <b>S1</b> | 52      | S3      | S4      |
|    | Analyte↓                 | Depth, m →  | ~5.0    | ~8.6    | 0.3~0.8 | ~2.0    | ~5.0    | ~10.0   | 0.3~0.8   | ~2.0    | ~5.0    | ~10,0   |
| 1  | Bolstar                  | μg/kg       | ND        | ND      | ND      | ND      |
| 2  | Chlorpyrifos             | µg/kg       | ND        | ND      | NÐ      | ND      |
| 3  | Coumaphos                | µg/kg       | ND        | ND      | ND      | ND      |
| 4  | Demeton                  | µg/kg       | ND        | ND      | ND      | ND      |
| 5  | Diazinon                 | μg/kg       | ND        | ND      | ND      | ND      |
| 6  | Dichlorvos               | μg/kg       | ND      | ND      | ND      | ND      | ND      | ND      | NÐ        | ND      | ND      | ND      |
| 7  | Dimethoate               | µg/kg       | ND        | ND      | ND      | ND      |
| 8  | Disulfoton               | µg/kg       | ND      | ND      | NÐ      | ND      | ND      | ND      | ND        | ND      | ND      | ND      |
| 9  | EPN                      | µg/kg       | ND        | NÐ      | ND      | ND      |
| 10 | Ethoprop                 | µg/kg       | ND      | ND      | ND      | ND      | ND      | ND      | NÐ        | ND      | ND      | ND      |
| 11 | Ethyl Parathion          | µg/kg       | ND        | ND      | ND      | ND      |
| 12 | Fensulfothion            | µg/kg       | ND        | ND      | NÐ      | ND      |
| 13 | Fenthion                 | μg/kg       | ND        | ND      | ND      | ND      |
| 14 | Malathion                | µg/kg       | ND      | ND      | ND      | NÐ      | ND      | ND      | ND        | ND      | ND      | ND      |
| 15 | Methyl Azinphos(Guthion) | μg/kg       | ND        | ND      | ND      | ND      |
| 16 | Methyl Parathion         | µg/kg       | ND      | ND      | ND      | ND      | ND      | ND      | NÐ        | ND      | ND      | ND      |
| 17 | Merphos                  | µg/kg       | ND        | ND      | ND      | ND      |
| 18 | Mevinphos                | μg/kg       | ND        | ND      | ND      | ND      |
| 19 | Monocrotophos            | µg/kg       | ND        | NÐ      | ND      | ND      |
| 20 | Naled                    | µg/kg       | ND        | ND      | ND      | ND      |
| 21 | Phorate                  | μg/kg       | ND        | ND      | ND      | ND      |
| 22 | Ronnel                   | µg/kg       | ND        | ND      | ND      | ND      |
| 23 | Sulfotep                 | µg/kg       | NU      | NU      | NU      | NU      | NU      | ND      | NŬ        | ND      | NU      | ND      |
| 24 | Stirophos                | µg/kg       | ND        | ND      | ND      | ND      |
|    | ТЕРР                     | µg/kg       | ND      | ND      | ND      | ND      | ND      | NÐ      | ND        | ND      | ND      | ND      |
|    | Tokuthion                | µg/kg       | ND        | ND      | ND      | ND      |
| 27 | Trichloronate            | µg/kg       | ND        | ND      | ND      | ND      |

NOTES:

R: Data rejected

ND: Not detected

33.78

|    |                          | Borehole →             | E11-196 | E11-196 | E11-196 | E11-196 |
|----|--------------------------|------------------------|---------|---------|---------|---------|
| No |                          | Sample ID →            | S1      | S2      | 53      | 54      |
|    | Analyte↓                 | Depth, m $\rightarrow$ | 0.3~0.8 | ~2.3    | ~5.3    | ~10.3   |
| 1  | Bolstar                  | μg/kg                  | ND      | ND      | ND      | ND      |
| 2  | Chlorpyrifos             | μg/kg                  | ND      | ND      | ND      | ND      |
| 3  | Coumaphos                | μg/kg                  | ND      | ND      | ND      | ND      |
| 4  | Demeton                  | µg/kg                  | ND      | ND      | ND      | ND      |
| 5  | Diazinon                 | µg/kg                  | ND      | ND      | ND      | ND      |
| 6  | Dichlorvos               | µg/kg                  | ND      | ND      | ND      | ND      |
| 7  | Dimethoate               | μg/kg                  | ND      | ND      | ND      | ND      |
| 8  | Disulfoton               | µg/kg                  | ND      | ND      | NÐ      | ND      |
| 9  | EPN                      | µg/kg                  | ND      | ND      | ND      | ND      |
| 10 | Ethoprop                 | µg/kg                  | ND      | ND      | ND      | ND      |
| 11 | Ethyl Parathion          | µg/kg                  | ND      | ND      | ND      | ND      |
| 12 | Fensulfothion            | µg/kg                  | ND      | ND      | ND      | ND      |
| 13 | Fenthion                 | μg/kg                  | ND      | ND      | ND      | ND      |
| 14 | Malathion                | μg/kg                  | ND      | ND      | ND      | ND      |
| 15 | Methyl Azinphos(Guthion) | µg/kg                  | ND      | ND      | NÐ      | ND      |
| 16 | Methyl Parathion         | µg/kg                  | ND      | ND      | ND      | ND      |
| 17 | Merphos                  | µg/kg                  | ND      | ND      | ND      | ND      |
| 18 | Mevinphos                | µg/kg                  | ND      | ND      | ND      | ND      |
| 19 | Monocrotophos            | µg/kg                  | ND      | ND      | ND R    | NÐ      |
| 20 | Naled                    | μg/kg                  | ND      | ND      | ND      | ND      |
| 21 | Phorate                  | µg/kg                  | ND      | ND      | ND      | ND      |
| 22 | Ronnel                   | µg/kg                  | ND      | ND      | ND      | ND      |
| 23 | Sulfotep                 | µg/kg                  | ND      | ND      | NŬ      | NU      |
| 24 | Stirophos                | µg/kg                  | ND      | NÐ      | ND      | ND      |
| 25 | ТЕРР                     | µg/kg                  | ND      | ND      | ND      | ND      |
| 26 | Tokuthion                | µg/kg                  | ND      | ND      | ND      | ND      |
| 27 | Trichloronate            | µg/kg                  | ND      | ND      | ND      | ND      |

## NOTES:

R: Data rejected

ND: Not detected

ŕ

|      |                             | Borehole $\rightarrow$  | E11-154 | E11-154 | E11-155 | E11-155 | E11-156 | E11-156 | E11-156 | E11-157 | E11-157 | E11-157 |
|------|-----------------------------|-------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| No   |                             | Sample ID $\rightarrow$ | S1      | S2      | S1      | S2      | S1      | S2      | S3      | S1      | S2      | \$3     |
|      | Analyte↓                    | Depth, m $\rightarrow$  | 0.0~0.5 | ~2.3    | 0.0~0.5 | ~1.8    | 0.0~0.5 | ~2.0    | ~6.45   | 0.0~0.5 | ~2.0    | ~4.5    |
| 1    | 1,1,1,2-Tetrachloroethane   | µg/kg                   | ND      | NĎ      | ND      | ND      |
| 2    | 1,1,1-Trichloroethane       | µg/kg                   | ND      | NÐ      | ND      | ND      |
| 3    | 1,1,2,2-Tetrachloroethane   | µg/kg                   | ND      |
| 4    | 1,1,2-Trichloroethane       | µg/kg                   | ND      |
| 5    | 1,1-Dichloroethane          | µg/kg                   | ND      |
| 6    | 1,1-Dichloroethene          | µg/kg                   | ND      | NÐ      | ND      | ND      |
| 7    | 1,1-Dichloropropene         | µg/kg                   | ND      |
| 8    | 1,2,3-Trichlorobenzene      | µg/kg                   | ND      | ND      | NÐ      | ND      |
| 9    | 1,2,3-Trichloropropane      | µg/kg                   | ND      |
| 10   | 1,2,4-Trichlorobenzene      | µg/kg                   | ND      |
|      | 1,2,4-Trimethylbenzene      | µg/kg                   | ND      |
|      | 1,2-Dibromo-3-chloropropane | µg/kg                   | ND      | ND      | ND      | ND      | NÐ      | ND      | ND      | ND      | ND      | ₩D      |
| 13   | 1,2-Dibromoethane           | µg/kg                   | ND      |
| 14   | 1,2-Dichlorobenzene         | μg/kg                   | ND      |
| 15   | 1,2-Dichloroethane          | µg/kg                   | ND      |
| 16   | 1,2-Dichloropropane         | µg/kg                   | ND      |
| 17   | 1,3,5-Trimethylbenzene      | µg/kg                   | ND      |
|      | 1,3-Dichlorobenzene         | µg/kg                   | ND      |
| 19   | 1,3-Dichloropropane         | µg/kg                   | ND      |
| 20   | 1,4-Dichlorobenzene         | µg/kg                   | ND      |
| 21   | 2,2-Dichloropropane         | µg/kg                   | ND      |
| 22   | 2-Butanone                  | µg/kg                   | ND      | 1.82 J  | ND      | 9,61 J  | ND      | ND      | ND      | ND      | ND      | ND      |
|      | 2-Chlorotoluene             | µg/kg                   | ND      | ND      | ND      | ND      | ND      | NÐ      | ND      | ND      | ND      | ND      |
| 24   | 2-Hexanone                  | μg/kg                   | ND      |
|      | 4-Chlorotoluene             | µg/kg                   | ND      |
| 26   | 4-Isopropyltoluene          | µg/kg                   | ND      |
| 27   | 4-Methyl-2-pentanone        | µg/kg                   | ND      |
| 28   | Acetone                     | µg/kg                   | ND      | ND      | ND      | 42.5 J  | 16.9 J  | 20,7 J  | 7.36 J  | ND      | ND      | ND      |
| 29   | Benzene                     | µg/kg                   | ND      |
| 30   | Bromobenzene                | µg/kg                   | ND      |
|      | Bromochloromethane          | µg/kg                   | ND      | ND      | ND      | NĎ      | ND      | ND      | ND      | ND      | ND      | ND      |
| 32   | Bromodichloromethane        | µg/kg                   | ND      |
| 33   | Bromoform                   | µg/kg                   | ND      | NÐ      |
| 34 1 | Bromomethane                | µg/kg                   | ND      |

÷,

# Table 7. Summary of Volatile Organic Compound Results for Phase II and IIb Soil Samples

NOTES:

J: Estimated amount between the detection limit and reporting limit

R: Data rejected

33 80

| Table 7. Continue |
|-------------------|
|-------------------|

|    |                                | Borehole $\rightarrow$  | E11-154 | E11-154 | E11-155 | E11-155 | E11-156 | E11-156 | E11-156 | E11-157 | E11-157 | E11-157 |
|----|--------------------------------|-------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| No |                                | Sample ID $\rightarrow$ | S1      | S2      | S1      | S2      | S1      | S2      | S3      | \$1     | \$2     | S3      |
|    | Analyte J                      | Depth, m $\rightarrow$  | 0.0~0.5 | ~2.3    | 0.0~0.5 | ~1.8    | 0.0~0.5 | ~2.0    | ~6.45   | 0.0~0.5 | ~2.0    | ~4.5    |
| 35 | Carbon disulfide               | μg/kg                   | ND      | 0,976 J | ND      |
| 36 | Carbon tetrachloride           | µg/kg                   | ND      |
| 37 | Chlorobenzene                  | μg/kg                   | ND      | NÐ      |
| 38 | Chloroethane                   | µg/kg                   | ND      |
| 39 | Chloroform                     | μg/kg                   | ND      | ND      | ND      | ND      | NÐ      | ND      | ND      | NÐ      | ND      | ND      |
| 40 | Chloromethane                  | μg/kg                   | ND      |
| 41 | cis-1,2-Dichloroethene         | µg/kg                   | ND      |
| 42 | cis-1,3-Dichloropropene        | µg/kg                   | ND      |
| 43 | Dibromochloromethane           | μg/kg                   | ND      |
| 44 | Dibromomethane                 | µg/kg                   | ND      |
| 45 | Dichlorodifluoromethane        | µg/kg                   | ND      | ND      | NÐ      | ND      |
| 46 | Ethyl Benzene                  | µg/kg                   | ND      |
| 47 | Hexachlorobutadiene            | µg/kg                   | ND      | ND      | ND      | NÐ      | ND      | ND      | ND      | ND      | ND      | ND      |
| 48 | Isopropylbenzene (Cumene)      | µg/kg                   | ND      | ND      | ND      | ND      | ND      | ND      | NÐ      | ND      | ND      | ND      |
| 49 | m,p-Xylene                     | µg/kg                   | ND      |
| 50 | Methyl iodide                  | µg/kg                   | ND      |
| 51 | Methylene chloride             | µg/kg                   | ND      |
| 52 | Naphthalene                    | µg/kg                   | ND      |
| 53 | n-Butylbenzene                 | µg/kg                   | ND      | NĎ      | ND      | ND      |
| 54 | n-Propylbenzene                | µg/kg                   | ND      | NÐ      | ND      | ND      |
| 55 | o-Xylene                       | µg/kg                   | ND      | ND      | NÐ      | ND      |
| 56 | sec-Butylbenzene               | µg/kg                   | ND      |
| 57 | Styrene                        | µg/kg                   | ND      | ND R    |
| 58 | tert-Butyl methyl ether (MTBE) | µg/kg                   | ND      | NÐ      | ND      |
| 59 | tert-Butylbenzene              | µg/kg                   | ND      |
| 60 | Tetrachloroethene              | µg/kg                   | ND      | ND      | ND      | ND      | ND      | 1,39 J  | ND      | ND      | ND      | ND      |
| 61 | Toluene                        | μg/kg                   | ND      |
| 62 | trans-1,2-Dichloroethene       | µg/kg                   | ND      |
| 63 | trans-1,3-Dichloropropene      | µg/kg                   | ND      |
| 64 | trans-1,4-Dichloro-2-butene    | µg/kg                   | ND      |
| 65 | Trichloroethene                | µg/kg                   | ND ·    | ND      |
| 66 | Trichlorofluoromethane         | µg/kg                   | ND      |
| 67 | Vinyl chloride                 | µg/kg                   | ND      |

J: Estimated amount between the detection limit and reporting limit

R: Data rejected

|                 |                   | Borehole →              | E11-158 | E11-158 | E11-158 | E11-158    | E11-159 | E11-159 | E11-159     | E11-159 | E11-160 | E11-160 |
|-----------------|-------------------|-------------------------|---------|---------|---------|------------|---------|---------|-------------|---------|---------|---------|
| Vo              |                   | Sample ID $\rightarrow$ | S1      | S2      | S3      | <b>S</b> 4 | S1      | S2      | S3          | S4      | S1      | S2      |
| Analyte↓        |                   | Depth, m →              | 0.0~0.5 | ~2.0    | ~5.0    | ~8.5       | 0.0~0.5 | ~2.0    | <u>~5,0</u> | ~10.0   | 0.0~0.5 | ~2.0    |
| 1 1,1,1,2-Tet   | achloroethane     | µg/kg                   | ND      | ND      | ND      | ND         | ND      | ND      | ND          | ND      | ND      | ND      |
| 2 1,1,1-Trichl  | oroethane         | μg/kg                   | ND      | ND      | ND      | ND         | ND      | ND      | ND          | ND      | ND      | ND      |
| 3 1,1,2,2-Tet   | achloroethane     | µg/kg                   | ND      | ND      | NÐ      | ND         | ND      | ND      | NÐ          | ND      | ND      | ND      |
| 4 1,1,2-Trichl  | oroethane         | µg/kg                   | ND      | ND      | ND      | ND         | ND      | ND      | ND          | ND      | ND      | ND      |
| 5 1,1-Dichlor   | oethane           | µg/kg                   | ND      | ND      | ND      | NÐ         | ND      | ND      | ND          | ND      | ND      | ND      |
| 6 1,1-Dichlor   | oethene           | μg/kg                   | ND      | NÐ      | ND      | ND         | ND      | ND      | ND          | ND      | ND      | ND      |
| 7 1,1-Dichlor   | opropene          | µg/kg                   | ND      | ND      | ND      | ND         | ND      | ND      | ND          | ND      | ND      | ND      |
| 8 1,2,3-Trichl  | orobenzene        | µg/kg                   | ND      | ND      | ND      | ND         | ND      | ND      | ND          | ND      | ND      | ND      |
| 9 1,2,3-Trichl  | oropropane        | µg/kg                   | ND      | ND      | ND      | ND         | ND      | ND      | ND          | ND      | ND      | ND      |
| 10 1,2,4-Trichi | orobenzene        | µg/kg                   | ND      | ND      | ND      | ND         | ND      | ND      | ND          | ND      | ND      | ND      |
| 11 1,2,4-Trime  | thylbenzene       | μg/kg                   | ND      | ND      | ND      | ND         | ND      | ND      | ND          | ND      | ND      | ND      |
| 12 1,2-Dibrom   | o-3-chloropropane | µg/kg                   | ND      | ND      | ND      | ND         | ND      | ND      | ND          | ND      | ND      | ND      |
| 13 1,2-Dibrom   | pethane           | µg/kg                   | ND      | ND      | ND      | ND         | ND      | ND      | ND          | ND      | ND      | ND      |
| 14 1,2-Dichloro | obenzene          | µg/kg                   | ND      | ND      | ND      | ND         | ND      | ND      | ND          | ND      | ND      | ND      |
| 15 1,2-Dichloro | oethane           | μg/kg                   | ND      | ND      | ND      | ND         | NÐ      | ND      | ND          | ND      | ND      | ND      |
| 16 1,2-Dichloro | propane           | μg/kg                   | ND      | NÐ      | NÐ      | ND         | ND      | ND      | ND          | ND      | NÐ      | ND      |
| 17 1,3,5-Trime  | thylbenzene       | μg/kg                   | ND      | ND      | ND      | ND         | ND      | ND      | ND          | ND      | ND      | ND      |
| 18 1,3-Dichloro | benzene           | µg/kg                   | ND      | ND      | ND      | ND         | ND      | ND      | ND          | ND      | ND      | ND      |
| 19 1,3-Dichlord | propane           | µg/kg                   | ND      | ND      | ND      | ND         | ND      | ND      | ND          | NĎ      | ND      | ND      |
| 20 1,4-Dichlord | benzene           | µg/kg                   | ND      | ND      | ND      | ND         | ND      | ND      | ND          | ND      | ND      | ND      |
| 21 2,2-Dichloro | propane           | µg/kg                   | ND      | ND      | ND      | ND         | ND      | ND      | ND          | ND      | ND      | ND      |
| 22 2-Butanone   |                   | μg/kg                   | ND      | 24,2 J  | ND      | ND         | ND      | ND      | ND          | ND      | ND      | ND      |
| 23 2-Chiorotolu | iene              | µg/kg                   | ND      | ND      | ND      | ND         | ND      | ND      | ND          | ND      | ND      | ND      |
| 24 2-Hexanone   |                   | μg/kg                   | ND      | ND      | ND      | ND         | ND      | ND      | ND          | ND      | ND      | ND      |
| 25 4-Chlorotolu | iene              | μg/kg                   | ND      | ND      | ND      | ND         | ND      | ND      | ND          | ND      | ND      | ND      |
| 26 4-Isopropylt | oluene            | µg/kg                   | ND      | NÐ      | ND      | ND         | ND      | ND      | ND          | ND      | ND      | ND      |
| 27 4-Methyl-2-  | pentanone         | μg/kg                   | ND      | ND      | ND      | ND         | ND      | ND      | ND          | ND      | ND      | ND      |
| 8 Acetone       |                   | μg/kg                   | ND      | ND      | ND      | ND         | ND      | ND      | ND          | ND      | ND      | ND      |
| 9 Benzene       |                   | µg/kg                   | ND      | ND      | ND      | ND         | ND      | ND      | ND          | ND      | ND      | ND      |
| Bromobenze      | ene               | µg/kg                   | ND      | ND      | ND      | ND         | ND      | ND      | ND          | ND      | ND      | ND      |
| 1 Bromochior    | omethane          | µg/kg                   | NÐ      | ND      | ND      | ND         | ND      | ND      | ND          | ND      | ND      | ND      |
| 2 Bromodichle   | promethane        | μg/kg                   | ND      | ND      | ND      | ND         | ND      | ND      | ND          | ND      | ND      | ND      |
| 3 Bromoform     |                   | µg/kg                   | ND      | ND      | ND      | ND         | NÐ      | ND      | ND          | ND      | ND      | ND      |
| 4 Bromometh     | ane               | µg/kg                   | ND      | ND      | ND      | ND         | ND      | ND      | ND          | ND      | ND      | ND      |

Ψ.

Table 7. Continued

J: Estimated amount between the detection limit and reporting limit

R: Data rejected

.

| Table 7 | . Con | tinued |
|---------|-------|--------|
|         |       |        |

|    |                                | Borehole →             | E11-158 | E11-158  | E11-158 | E11-158 | E11-159 | E11-159 | E11-159 | E11-159 | E11-160 | E11-160 |
|----|--------------------------------|------------------------|---------|----------|---------|---------|---------|---------|---------|---------|---------|---------|
| No |                                | Sample ID →            | S1      | S2       | S3      | S4      | S1      | S2      | S3      | S4      | S1      | S2      |
|    | Analyte J                      | Depth, m $\rightarrow$ | 0.0~0.5 | ~2.0     | ~5.0    | ~8,5    | 0.0~0.5 | ~2.0    | ~5.0    | ~10.0   | 0.0~0.5 | ~2.0    |
| 35 | Carbon disulfide               | µg/kg                  | ND      | ND       | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 36 | Carbon tetrachloride           | μg/kg                  | ND      | ND       | ND      | ND      | ND      | ND      | NÐ      | ND      | ND      | ND      |
| 37 | Chlorobenzene                  | µg/kg                  | ND      | ND       | ND      | NÐ      | ND      | ND      | ND      | ND      | ND      | ND      |
| 38 | Chloroethane                   | µg/kg                  | ND      | ND       | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 39 | Chloroform                     | μg/kg                  | ND      | ND       | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 40 | Chloromethane                  | µg/kg                  | ND      | ND       | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 41 | cis-1,2-Dichloroethene         | μg/kg                  | ND      | ND       | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 42 | cis-1,3-Dichloropropene        | µg/kg                  | ND      | ND       | ND      | ND      | ND      | ND      | ND      | ND      | NÐ      | ND      |
| 43 | Dibromochloromethane           | µg/kg                  | ND      | NÐ       | ND      | ND      | ND      | NÐ      | ND      | ND      | ND      | ND      |
| 44 | Dibromomethane                 | µg/kg                  | ND      | ND       | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 45 | Dichlorodifluoromethane        | μg/kg                  | ND      | ND       | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 46 | Ethyl Benzene                  | µg/kg                  | ND      | ND       | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 47 | Hexachlorobutadiene            | µg/kg                  | NÐ      | NÐ       | ND      |
| 48 | lsopropylbenzene (Cumene)      | µg/kg                  | ND      | ND       | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 49 | m,p-Xylene                     | μg/kg                  | ND      | ND       | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 50 | Methyl iodide                  | µg/kg                  | ND      | 5.23     | ND      |
| 51 | Methylene chloride             | µg/kg                  | 5.26 J  | ND       | 3.22 J  | 2,83 J  | 4.15 J  | 4.38 J  | 3.71 J  | 2.16 J  | ND      | ND      |
| 52 | Naphthalene                    | µg/kg                  | ND      | ND       | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 53 | n-Butylbenzene                 | µg/kg                  | ND      | ND       | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 54 | n-Propylbenzene                | µg/kg                  | ND      | ND       | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 55 | o-Xylene                       | µg/kg                  | ND      | ND       | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 56 | sec-Butylbenzene               | µg/kg                  | ND      | ND       | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 57 | Styrene                        | µg/kg                  | ND      | ND       | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 58 | tert-Butyl methyl ether (MTBE) | µg/kg                  | ND      | ND       | ND      | ND      | ND      | ND      | ND      | ND      | ND      | NÐ      |
| 59 | tert-Butylbenzene              | μg/kg                  | ND      | ND       | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 60 | Tetrachloroethene              | µg/kg                  | ND      | 0.931 J  | ND      |
| 61 | Toluene                        | µg/kg                  | 1.61 J  | ∴ 1.14 J | 0.707 J | ND      | 2,33 J  | 3.97 J  | 6.01    | 1.09 J  | ND      | ND      |
| 62 | trans-1,2-Dichloroethene       | µg/kg                  | ND      | ND       | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 63 | trans-1,3-Dichloropropene      | μg/kg                  | ND      | ND       | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 64 | trans-1,4-Dichloro-2-butene    | μg/kg                  | ND      | ND       | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 65 | Trichloroethene                | µg/kg                  | ND      | ND       | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 66 | Trichlorofluoromethane         | µg/kg                  | ND      | ND       | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 67 | Vinyl chloride                 | µg/kg                  | ND      | ND       | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |

.

.

NOTES:

J: Estimated amount between the detection limit and reporting limit

R: Data rejected

|    | Bo                          | rehole $\rightarrow$ | E11-160 | E11-161 | E11-161 | E11-161 | E11-161    | E11-162    | E11-162 | E11-163    | E11-163 | E11-163 |
|----|-----------------------------|----------------------|---------|---------|---------|---------|------------|------------|---------|------------|---------|---------|
| No | Sarr                        | nple ID →            | \$3     | S1      | S2      | \$3     | <b>S</b> 4 | 5 <b>1</b> | S2      | <b>\$1</b> | \$2     | 53      |
|    | Analyte↓ De                 | pth, m →             | ~3.4    | 0.0~0.5 | ~2.0    | ~5.0    | ~7.9       | 0.0~0.5    | ~1.52   | 0.0~0.5    | ~2.0    | ~5.0    |
| 1  | 1,1,1,2-Tetrachloroethane   | µg/kg                | ND      | ND      | ND      | ND      | ND         | ND         | NÐ      | ND         | ND      | ND      |
| 2  | 1,1,1-Trichloroethane       | µg/kg                | ND      | ND      | ND      | ND      | ND         | ND         | ND      | ND         | ND      | ND      |
| 3  | 1,1,2,2-Tetrachloroethane   | µg/kg                | ND      | ND      | ND      | ND      | ND         | ND         | ND      | ND         | ND      | ND      |
| 4  | 1,1,2-Trichloroethane       | µg/kg                | ND      | ND      | ND      | ND      | ND         | ND         | ND      | ND         | ND      | ND      |
| 5  | 1,1-Dichloroethane          | µg/kg                | ND      | ND      | ND      | ND      | ND         | ND         | NÐ      | ND         | ND      | ND      |
| 6  | 1,1-Dichloroethene          | µg/kg                | ND      | ND      | ND      | NÐ      | ND         | ND         | ND      | ND         | ND      | ND      |
| 7  | 1,1-Dichloropropene         | µg/kg                | ND      | ND      | ND      | ND      | ND         | ND         | ND      | ND         | ND      | ND      |
| 8  | 1,2,3-Trichlorobenzene      | µg/kg                | ND      | ND      | ND      | ND      | ND         | ND         | ND      | ND         | ND      | ND      |
| 9  | 1,2,3-Trichloropropane      | µg/kg                | ND      | ND      | ND      | ND      | ND         | ND         | ND      | ND         | ND      | ND      |
| 10 | 1,2,4-Trichlorobenzene      | µg/kg                | ND      | ND      | ND      | ND      | ND         | ND         | ND      | ND         | ND      | ND      |
| 11 | 1,2,4-Trimethylbenzene      | µg/kg                | ND      | ND      | ND      | ND      | ND         | ND         | ND      | ND         | ND      | ND      |
| 12 | 1,2-Dibromo-3-chloropropane | µg/kg                | ND      | ND      | ND      | ND      | ND         | ND         | ND      | ND         | ND      | ND      |
| 13 | 1,2-Dibromoethane           | µg/kg                | ND      | NÐ      | ND      | ND      | ND         | ND         | ND      | ND         | ND      | ND      |
| 14 | 1,2-Dichlorobenzene         | µg/kg                | ND      | ND      | ND      | ND      | ND         | ND         | ND      | ND         | ND      | ND      |
| 15 | 1,2-Dichloroethane          | µg/kg                | ND      | ND      | ND      | ND      | NÐ         | ND         | ND      | ND         | ND      | ND      |
| 16 | 1,2-Dichloropropane         | µg/kg                | ND      | ND      | ND      | ND      | ND         | ND         | ND      | ND         | ND      | ND      |
| 17 | 1,3,5-Trimethylbenzene      | µg/kg                | ND      | ND      | ND      | ND      | ND         | ND         | ND      | ND         | ND      | ND      |
| 18 | 1,3-Dichlorobenzene         | µg/kg                | ND      | ND      | ND      | ND      | ND         | ND         | ND      | ND         | ND      | ND      |
| 19 | 1,3-Dichloropropane         | µg/kg                | ND      | ND      | ND      | ND      | ND         | ND         | ND      | ND         | ND      | ND      |
| 20 | 1,4-Dichlorobenzene         | µg/kg                | ND      | ND      | NÐ      | ND      | ND         | ND         | ND      | ND         | ND      | ND      |
| 21 | 2,2-Dichloropropane         | µg/kg                | ND      | ND      | ND      | ND      | ND         | ND         | ND      | ND         | ND      | ND      |
| 22 | 2-Butanone                  | µg/kg                | ND      | ND      | ND      | ND      | ND         | ND         | ND      | ND         | ND      | ND      |
| 23 |                             | µg/kg                | ND      | ND      | ND      | ND      | ND         | ND         | ND      | ND         | ND      | ND      |
| 24 | 2-Hexanone                  | µg/kg                | ND      | ND      | ND      | ND      | ND         | ND         | ND      | ND         | ND      | ND      |
| 25 | 4-Chlorotoluene             | µg/kg                | ND      | ND      | ND      | NÐ      | ND         | ND         | ND .    | ND         | ND      | ND      |
| 26 | 4-Isopropyltoluene          | µg/kg                | ND      | ND      | ND      | ND      | ND         | ND         | ND      | ND         | ND      | ND      |
| 27 | 4-Methyl-2-pentanone        | µg/kg                | NÐ      | ND      | ND      | ND      | ND         | ND         | ND      | ND         | ND      | ND      |
| 28 | Acetone                     | µg/kg                | ND      | 11.6 J  | 7.18 J  | ND      | 5,23 J     | 12.5 J     | ND      | ND         | ND      | ND      |
| 29 | Benzene 1                   | µg/kg                | ND      | ND      | ND      | ND      | ND         | ND         | ND      | ND         | ND      | ND      |
| 30 | Bromobenzene I              | µg/kg                | ND      | ND      | ND      | ND      | ND         | ND         | ND      | ND         | ND      | ND      |
|    |                             | µg/kg                | NÐ      | ND      | ND      | ND      | NÐ         | ND         | ND      | ND         | ND      | ND      |
| 32 | Bromodichloromethane        | µg/kg                | ND      | ND      | ND      | ND      | NĎ         | ND         | ND      | ND         | ND      | ND      |
| 33 | Bromoform I                 | ug/kg                | ND      | ND      | ND      | ND      | ND         | ND         | ND      | ND         | ND      | ND      |
| 34 | Bromomethane J              | ug/kg                | ND      | ND .    | ND      | ND      | ND         | ND         | ND      | ND         | ND      | ND      |

NOTES:

J: Estimated amount between the detection limit and reporting limit

R: Data rejected

|    |                                | Borehole →              | E11-160 | E11-161    | E11-161 | E11-161 | E11-161 | E11-162 | E11-162 | E11-163 | E11-163 | E11-163 |
|----|--------------------------------|-------------------------|---------|------------|---------|---------|---------|---------|---------|---------|---------|---------|
| No |                                | Sample ID $\rightarrow$ | S3      | <b>\$1</b> | S2      | 53      | .54     | S1      | S2      | S1      | S2      | \$3     |
|    | Analyte↓                       | Depth, m →              | ~3.4    | 0.0~0.5    | ~2.0    | ~5.0    | ~7.9    | 0.0~0.5 | ~1,52   | 0.0~0.5 | ~2.0    | ~5.0    |
| 35 | Carbon disulfide               | μg/kg                   | ND      | ND         | ND      | ND      | ND      | NÐ      | ND      | ND      | ND      | ND      |
| 36 | Carbon tetrachloride           | µg/kg                   | ND      | ND         | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 37 | Chlorobenzene                  | µg/kg                   | ND      | ND         | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 38 | Chloroethane                   | μg/kg                   | ND      | ND         | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 39 | Chloroform                     | μg/kg                   | ND      | ND         | ND      | ND      | ND      | NÐ      | NÐ      | ND      | ND      | ND      |
| 40 | Chloromethane                  | μg/kg                   | ND      | ND         | ND      | ND R    | ND      | ND      | NĎ      | ND      | ND      | ND      |
| 41 | cis-1,2-Dichloroethene         | μg/kg                   | NÐ      | ND         | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 42 | cis-1,3-Dichloropropene        | μg/kg                   | ND      | ND         | ND      | ND      | NĎ      | ND      | ND      | ND      | ND      | ND      |
| 43 | Dibromochloromethane           | µg/kg                   | ND      | ND         | ND      | NÐ      | ND      | ND      | ND      | ND      | ND      | ND      |
| 44 | Dibromomethane                 | μg/kg                   | ND      | ND         | NĎ      | ND      |
| 45 | Dichlorodifluoromethane        | μg/kg                   | ND      | ND         | ND      | ND      | NÐ      | ND      | ND      | ND      | ND      | ND      |
| 46 | Ethyl Benzene                  | μg/kg                   | ND      | ND         | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 47 | Hexachlorobutadiene            | μg/kg                   | ND      | NÐ         | ND      | ND      | ND      | ND      | ND      | ND      | NÐ      | ND      |
| 48 | Isopropylbenzene (Cumene)      | μg/kg                   | NÐ      | ND         | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 49 | m,p-Xylene                     | μg/kg                   | ND      | ND         | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 50 | Methyl iodide                  | µg/kg                   | ND      | ND         | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 51 | Methylene chloride             | μg/kg                   | ND      | ND         | ND      | NÐ      | ND      | ND      | ND      | 6.27 J  | 3,83 J  | 3.34 J  |
| 52 | Naphthalene                    | μg/kg                   | ND      | ND         | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 53 | n-Butylbenzene                 | μg/kg                   | ND      | ND .       | ND      | ND      | ND      | ND      | NÐ      | ND      | ND      | ND      |
| 54 | n-Propylbenzene                | µg/kg                   | ND      | ND         | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 55 | o-Xylene                       | µg/kg                   | NÐ      | ND         | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 56 | sec-Butylbenzene               | μg/kg                   | ND      | ND         | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 57 | Styrene                        | µg/kg                   | ND      | ND         | ND      | ND      | ND      | ND      | ND      | ND      | NÐ      | ND      |
| 58 | tert-Butyl methyl ether (MTBE) | µg/kg                   | ND      | ND         | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 59 | tert-Butylbenzene              | µg/kg                   | ND      | ND         | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 60 | Tetrachloroethene              | µg/kg                   | ND      | ND         | ND      | 2.93 J  | ND      | ND      | ND      | ND      | 20.2    | 9.68    |
| 61 | Toluene                        | μg/kg                   | ND      | ND         | ND      | ND      | ND      | ND      | ND      | 1,64 J  | 3.11 J  | 0.834 J |
| 62 | trans-1,2-Dichloroethene       | µg/kg                   | ND      | ND         | ND      | ND      | ND      | NÐ      | ND      | ND      | ND      | ND      |
| 63 | trans-1,3-Dichloropropene      | µg/kg                   | ND      | ND         | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 64 | trans-1,4-Dichloro-2-butene    | µg/kg                   | ND      | ND         | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 65 | Trichloroethene                | µg/kg                   | ND      | ND         | ND      | ND      | ND      | ND      | ND      | ND      | 4.85    | 5.1     |
| 66 | Trichlorofluoromethane         | μg/kg                   | ND      | NÐ         | ND      |
| 67 | Vinyl chloride                 | µg/kg                   | ND      | ND         | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |

•

۰

۰.

**1** 

# NOTES:

J: Estimated amount between the detection limit and reporting limit

R: Data rejected

| ЪЙ,    |                             | Borehole $\rightarrow$ | E11-163 | E11-164   | E11-164 | E11-164 | E11-164 | E11-165 | E11-165 | E11-165 | E11-165 | E11-166 |
|--------|-----------------------------|------------------------|---------|-----------|---------|---------|---------|---------|---------|---------|---------|---------|
| No     |                             | Sample ID →            | \$4     | <b>S1</b> | S2      | S3      | \$4     | S1      | 52      | S3      | S4      | S1      |
| -993   | Analyte↓                    | Depth, m →             | ~10.0   | 0.0~0.5   | ~2.0    | ~5.0    | ~11.0   | 0.0~0.5 | ~2.0    | ~5.0    | ~10.0   | 0.3~0.8 |
|        | 1,1,1,2-Tetrachloroethane   | μg/kg                  | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 2      | 1,1,1-Trichloroethane       | μg/kg                  | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| - ÷ -  | 1,1,2,2-Tetrachloroethane   | µg/kg                  | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 4      | 1,1,2-Trichloroethane       | µg/kg                  | NÐ      | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 5      | 1,1-Dichloroethane          | µg/kg                  | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      | 3 ]     | ND      |
| 6      | 1,1-Dichloroethene          | µg/kg                  | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 7      | 1,1-Dichloropropene         | µg/kg                  | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 8      | 1,2,3-Trichlorobenzene      | µg/kg                  | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 9      | 1,2,3-Trichloropropane      | µg/kg                  | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 10     | 1,2,4-Trichlorobenzene      | µg/kg                  | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 11     | 1,2,4-Trimethylbenzene      | µg/kg                  | ND      | ND        | ND      | ND      | NÐ      | ND      | ND      | ND      | ND      | ND      |
| 12     | 1,2-Dibromo-3-chloropropane | µg/kg                  | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 13     | 1,2-Dibromoethane           | µg/kg                  | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 14     | 1,2-Dichlorobenzene         | µg/kg                  | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 15     | 1,2-Dichloroethane          | µg/kg                  | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 16     | 1,2-Dichloropropane         | µg/kg                  | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 17     | 1,3,5-Trimethylbenzene      | µg/kg                  | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 18     | 1,3-Dichlorobenzene         | µg/kg                  | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 19     | 1,3-Dichloropropane         | µg/kg                  | ND      | ND        | ND      | ND      | ND      | ND      | ND      | NÐ      | ND      | ND      |
| 20     | 1,4-Dichlorobenzene         | µg/kg                  | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      | 2.82 J  | ND      |
| 21     | 2,2-Dichloropropane         | μg/kg                  | ND      | ND        | ND      | ND      | ND      | NÐ      | ND      | ND      | ND      | ND      |
| 22     | 2-Butanone                  | µg/kg                  | ND      | ND        | ND      | ND      | ND      | 8.02 J  | 3.99 J  | 3.58 J  | 1.27 J  | 15.2 J  |
| 23     | 2-Chlorotoluene             | µg/kg                  | ND      | ND        | ND      | ND      | 23.3.J  | ND      | ND      | ND      | ND      | ND      |
| 24     | 2-Hexanone                  | µg/kg                  | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 25 4   | 4-Chlorotoluene             | µg/kg                  | ND      | ND        | ND      | ND      | 52 J    | ND      | ND      | ND      | ND      | ND      |
| 26     | 4-Isopropyltoluene          | µg/kg                  | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 27     | 4-Methyl-2-pentanone        | µg/kg                  | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 28 /   | Acetone                     | µg/kg                  | ND      | ND        | ND      | ND      | ND      | 33.7 J  | 12.3 J  | 21.4 J  | 9.04 J  | 61.1    |
| 29 E   | Benzene                     | µg/kg                  | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      | 1.52 J  | ND      |
| 30 1   | Bromobenzene                | µg/kg                  | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 31   F | Bromochloromethane          | μg/kg                  | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 32 E   | Bromodichloromethane        | µg/kg                  | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 33 E   | Bromoform                   | µg/kg                  | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 34 E   | Bromomethane                | µg/kg                  | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |

J: Estimated amount between the detection limit and reporting limit

R: Data rejected

3386

.

| Table 7. | Continued |
|----------|-----------|
|          |           |

|                                       |                                | Borehole $\rightarrow$  | E11-163 | E11-164 | E11-164 | E11-164 | E11-164 | E11-165 | E11-165 | E11-165 | E11-165 | E11-166 |
|---------------------------------------|--------------------------------|-------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| No                                    |                                | Sample ID $\rightarrow$ | S4      | S1      | S2      | S3      | \$4     | S1      | S2      | \$3     | S4      | S1      |
|                                       | Analyte↓                       | Depth, m →              | ~10.0   | 0.0~0.5 | ~2.0    | ~5.0    | ~11.0   | 0.0~0.5 | ~2,0    | ~5.0    | ~10,0   | 0.3~0.8 |
| 35                                    | Carbon disulfide               | µg/kg                   | ND      | 0.721 J | ND      |
| 36                                    | Carbon tetrachloride           | μg/kg                   | ND      |
| 37                                    | Chlorobenzene                  | µg/kg                   | ND      | 6.86    | ND      |
| 38                                    | Chloroethane                   | μg/kg                   | ND      |
| 39                                    | Chloroform                     | µg/kg                   | 2.25 J  | ND      |
| 40                                    | Chloromethane                  | µg/kg                   | ND      |
| 41                                    | cis-1,2-Dichloroethene         | µg/kg                   | 10.4    | ND      | ND      | 4.62    | 116     | ND      | NÐ      | ND      | 20.7    | ND      |
| 42                                    | cis-1,3-Dichloropropene        | µg/kg                   | ND      | ND      | ND      | ND      | ND      | NĎ      | ND      | ND      | ND      | ND      |
| 43                                    | Dibromochloromethane           | µg/kg                   | ND      |
|                                       | Dibromomethane                 | μg/kg                   | ND      |
| 45                                    | Dichlorodifluoromethane        | μg/kg                   | ND      |
| 46                                    | Ethyl Benzene                  | µg/kg                   | ND      |
|                                       | Hexachlorobutadiene            | µg/kg                   | ND      |
| 48                                    | Isopropylbenzene (Cumene)      | μg/kg                   | ND      |
| 49                                    | m,p-Xylene                     | μg/kg                   | ND      |
| 50                                    | Methyl iodíde                  | µg/kg                   | NÐ      | ND      | ND      | ND      | ND      | 2.18 J  | 1.74 ]  | 1.89 J  | ND      | 6.78    |
|                                       | Methylene chloride             | μg/kg                   | 2.44 J  | 4.34 J  | 5,47 J  | 2.86 J  | 38.2 J  | 1 J     | ND      | ND      | ND      | 2.7 J   |
| 52                                    | Naphthalene                    | µg/kg                   | ND      | ND      | ND      | ND      | 17 J    | ND      | ND      | ND      | ND      | ND      |
| 53                                    | n-Butylbenzene                 | µg/kg                   | ND      |
| 54                                    | n-Propylbenzene                | μg/kg                   | ND      | ND      | ND      | ND      | NÐ      | ND      | ND      | ND      | ND      | ND      |
| 55                                    | o-Xylene                       | µg/kg                   | ND      |
| · · · · · · · · · · · · · · · · · · · | sec-Butylbenzene               | µg/kg                   | ND      | ND      | ND      | ND      | ND      | ND      | NÐ      | ND      | ND      | ND      |
|                                       | Styrene                        | µg/kg                   | ND      | ND      | ND      | ND      | NÐ      | ND      | ND      | ND      | ND      | ND      |
| 58                                    | tert-Butyl methyl ether (MTBE) | µg/kg                   | ND      |
|                                       | tert-Butylbenzene              | μg/kg                   | ND      |
|                                       | Tetrachloroethene              | µg/kg                   | 27.5    | ND      | ND      | 1,24 J  | ND      | ND      | 0.944 J | 3.45 J  | ND      | ND      |
|                                       | Toluene                        | µg/kg                   | 1.61 J  | 1.71 J  | 2.73 J  | ND      | 2960    | ND      | ND      | ND      | ND      | ND      |
|                                       | trans-1,2-Dichloroethene       | µg/kg                   | ND      | 1.65 J  | ND      |
|                                       | trans-1,3-Dichloropropene      | µg/kg                   | ND      | ND      | ND      | ND      | ND      | NÐ      | ND      | ND      | ND      | ND      |
|                                       | trans-1,4-Dichloro-2-butene    | µg/kg                   | ND      |
|                                       | Trichloroethene                | µg/kg                   | 81 3    | ND      | 1.28 J  | ND      |
|                                       | Trichlorofluoromethane         | µg/kg                   | ND      |
| 67 N                                  | Vinyl chloride                 | µg/kg                   | ND      |

#### NOTES:

J: Estimated amount between the detection limit and reporting limit

R: Data rejected

|      |                             | Borehole $\rightarrow$  | E11-166 | E11-167 | E11-167 | E11-167 | E11-168 | E11-168 | E11-169 | E11-169 | E11-170 | E11-170 |
|------|-----------------------------|-------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| No   |                             | Sample ID $\rightarrow$ | \$2     | S1      | S2      | .S3     | S1      | S2      | S1      | S2      | S1      | S2      |
| 1993 | Analyte↓                    | Depth, m →              | ~2.7    | 0.0~0.5 | ~2.0    | ~5.5    | 0.0~0.5 | ~3.0    | 0.0~0.5 | ~1.8    | 0.0~0.5 | ~2.0    |
| 1    | 1,1,1,2-Tetrachloroethane   | µg/kg                   | ND      |
| 2    | 1,1,1-Trichloroethane       | µg/kg                   | ND      | NÐ      | ND      | ND      |
| 3    | 1,1,2,2-Tetrachloroethane   | μg/kg                   | ND      |
| 4    | 1,1,2-Trichloroethane       | µg/kg                   | ND      | ND      | ND      | NÐ      | ND      | ND      | ND      | ND      | ND      | ND      |
| 5    | 1,1-Dichloroethane          | µg/kg                   | ND      |
| 6    | 1,1-Dichloroethene          | µg/kg                   | ND      |
| 7    | 1,1-Dichloropropene         | μg/kg                   | ND      |
| 8    | 1,2,3-Trichlorobenzene      | µg/kg                   | ND      |
| 9    | 1,2,3-Trichloropropane      | µg/kg                   | ND      |
| 10   | 1,2,4-Trichlorobenzene      | µg/kg                   | ND      |
| 11   | 1,2,4-Trimethylbenzene      | µg/kg                   | ND      |
| 12   | 1,2-Dibromo-3-chloropropane | µg/kg                   | ND      |
| 13   | 1,2-Dibromoethane           | µg/kg                   | ND      |
| 14   | 1,2-Dichlorobenzene         | µg/kg                   | ND      |
| 15   | 1,2-Dichloroethane          | µg/kg                   | ND      |
| 16   | 1,2-Dichloropropane         | μg/kg                   | ND      |
| 17   | 1,3,5-Trimethylbenzene      | µg/kg                   | ND      |
| 18   | 1,3-Dichlorobenzene         | µg/kg                   | ND      |
| 19   | 1,3-Dichloropropane         | µg/kg                   | ND      |
| 20   | 1,4-Dichlorobenzene         | µg/kg                   | ND      |
| 21   | 2,2-Dichloropropane         | µg/kg                   | ND      |
| 22   | 2-Butanone                  | µg/kg                   | ND      | 3.86 J  | 4.48 J  | ND      | 2.96 J  | ND      | 17,2 J  | ND      | 3.31 J  | 1.68 J  |
| 23   | 2-Chlorotoluene             | µg/kg                   | ND      |
| 24   | 2-Hexanone                  | µg/kg                   | ND      |
| 25   | 4-Chlorotoluene             | μg/kg                   | ND      |
| 26   | 4-Isopropyltoluene          | µg/kg                   | ND      |
| 27   | 4-Methyl-2-pentanone        | µg/kg                   | ND      |
| 28 / | Acetone                     | μg/kg                   | ND      | 28.5 J  | 31.6 J  | 7,12 J  | 14.5 J  | ND      | 87.1    | 5.2 J   | 21.9 J  | 10.3 J  |
| 29 I | Benzene                     | µg/kg                   | ND      | ND      | ND .    | ND      |
| 30   | Bromobenzene                | µg/kg                   | ND      |
| 31   | Bromochloromethane          | µg/kg                   | ND      |
| 32   | Bromodichloromethane        | μg/kg                   | NĎ      | ND      |
| 33 E | Bromoform                   | µg/kg                   | ND      |
| 34 1 | Bromomethane                | µg/kg                   | ND      |

J: Estimated amount between the detection limit and reporting limit R: Data rejected

|        |                                | Borehole $\rightarrow$  | E11-166 | E11-167 | E11-167 | E11-167 | E11-168 | E11-168 | E11-169 | E11-169 | E11-170 | E11-170 |
|--------|--------------------------------|-------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| No     |                                | Sample ID $\rightarrow$ | S2      | S1      | S2      | S3      | S1      | \$2     | S1      | \$2     | S1      | S2      |
| 101-52 | Analyte↓                       | Depth, m →              | ~2.7    | 0,0~0.5 | ~2.0    | ~5.5    | 0.0~0.5 | ~3.0    | 0.0~0.5 | ~1.8    | 0.0~0.5 | ~2.0    |
| 35     | Carbon disulfide               | μg/kg                   | ND      |
| 36     | Carbon tetrachloride           | µg/kg                   | ND      |
| 37     | Chlorobenzene                  | μg/kg                   | ND      |
| 38     | Chloroethane                   | μg/kg                   | ND      |
| 39     | Chloroform                     | μg/kg                   | ND      |
| 40     | Chloromethane                  | µg/kg                   | NĎ      | ND      | NÐ      |
| 41     | cis-1,2-Dichloroethene         | µg/kg                   | ND      | 0.714 J | 31.1    |
| 42     | cis-1,3-Dichloropropene        | µg/kg                   | ND      |
| 43     | Dibromochloromethane           | µg/kg                   | ND      |
| 44     | Dibromomethane                 | µg/kg                   | ND      |
| 45     | Dichlorodifluoromethane        | µg/kg                   | ND      |
| 46     | Ethyl Benzene                  | μg/kg                   | ND      |
| 47     | Hexachlorobutadiene            | μg/kg                   | ND      |
| 48     | Isopropylbenzene (Cumene)      | μg/kg                   | ND      |
| 49     | m,p-Xylene                     | µg/kg                   | ND      |
| 50     | Methyl iodide                  | µg/kg                   | ND      | 1.35 J  | 1.75 J  | ND      | ND      | ND      | 0,894 J | NÐ      | ND      | ND      |
| 51     | Methylene chloride             | µg/kg                   | 2,9 J   | ND      |
| 52     | Naphthalene                    | μg/kg                   | ND      |
| 53     | n-Butylbenzene                 | µg/kg                   | ND      |
|        | n-Propylbenzene                | µg/kg                   | ND      |
| 55     | o-Xylene                       | μg/kg                   | ND      |
|        | sec-Butylbenzene               | μg/kg                   | ND      |
|        | Styrene                        | µg/kg                   | ND      |
|        | tert-Butyl methyl ether (MTBE) | µg/kg                   | ND      |
|        | tert-Butylbenzene              | µg/kg                   | ND      |
|        | Tetrachioroethene              | µg/kg                   | ND      | 1,2 J   | NÐ      | ND      | 4,18 J  | ND      | 4.26    | ND      | 10.7    | 86.8    |
|        | Toluene                        | µg/kg                   | ND      | ND      | ND      | ND      | 0.698 J | ND      | 0.718 J | ND      | ND      | ND      |
|        | trans-1,2-Dichloroethene       | µg/kg                   | ND      |
|        | trans-1,3-Dichloropropene      | µg/kg                   | ND      |
|        | trans-1,4-Dichloro-2-butene    | μg/kg                   | ND      |
|        | Trichloroethene                | µg/kg                   | ND      | ND      | ND      | ND      | ND      | NÐ      | ND      | ND      | 0.768 J | 7.97    |
|        | Trichlorofluoromethane         | µg/kg                   | ND      | ND      | ND      | ND      | NÐ      | ND      | ND      | ND      | ND      | ND      |
| 67     | Vinyl chloride                 | µg/kg                   | ND      |

#### NOTES:

J: Estimated amount between the detection limit and reporting limit

R: Data rejected

| Table 7. | Continued |
|----------|-----------|

|      |                             | Borehole →              | E11-170 | E11-170 | E11-171 | E11-171 | E11-171 | E11-172 | E11-172 | E11-172 | E11-172 | E11-173 |
|------|-----------------------------|-------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| No   |                             | Sample ID $\rightarrow$ | \$3     | S4      | S1      | S2      | \$3     | S1      | S2      | S3      | S4      | S1      |
|      | Analyte↓                    | Depth, m →              | ~5.0    | ~7.5    | 0.0~0.5 | ~2.0    | ~6,5    | 0.0~0.5 | ~2.0    | ~5.0    | ~8.7    | 0.0~0.5 |
| 1    | 1,1,1,2-Tetrachloroethane   | μg/kg                   | ND      |
| 2    | 1,1,1-Trichloroethane       | µg/kg                   | ND      |
| 3    | 1,1,2,2-Tetrachloroethane   | µg/kg                   | ND      |
| 4    | 1,1,2-Trichloroethane       | µg/kg                   | ND      |
| 5    | 1,1-Dichloroethane          | µg/kg                   | ND      |
| 6    | 1,1-Dichloroethene          | μg/kg                   | ND      |
| 7    | 1,1-Dichloropropene         | µg/kg                   | ND      |
| 8    | 1,2,3-Trichlorobenzene      | μg/kg                   | ND      |
| 9    | 1,2,3-Trichloropropane      | µg/kg                   | ND      |
| 10   | 1,2,4-Trichlorobenzene      | μg/kg                   | ND      |
| 11   | 1,2,4-Trimethylbenzene      | μg/kg                   | ND      | ND      | NĎ      | ND      |
| 12   | 1,2-Dibromo-3-chloropropane | μg/kg                   | ND      |
| 13   | 1,2-Dibromoethane           | µg/kg                   | ND      |
| 14   | 1,2-Dichlorobenzene         | μg/kg                   | ND      | ND      | ND      | ND      | NÐ      | ND      | ND      | ND      | ND      | NÐ      |
| 15   | 1,2-Dichloroethane          | µg/kg                   | ND      |
| 16   | 1,2-Dichloropropane         | µg/kg                   | ND      |
| 17   | 1,3,5-Trimethylbenzene      | µg/kg                   | ND      |
| 18   | 1,3-Dichlorobenzene         | µg/kg                   | ND      |
| 19   | 1,3-Dichloropropane         | µg/kg                   | ND      |
|      | 1,4-Dichlorobenzene         | μg/kg                   | ND      |
|      | 2,2-Dichloropropane         | μg/kg                   | ND      |
| 22   | 2-Butanone                  | µg/kg                   | ND      | NÐ      | 8.16 J  | 1,9 J   | ND      | 26,4    | ND      | ND      | ND      | ND      |
|      | 2-Chlorotoluene             | µg/kg                   | ND      |
| 24   | 2-Hexanone                  | µg/kg                   | ND      | ND      | ND      | ND      | ND      | 4,44 J  | ND      | ND      | ND      | ND      |
| 25   | 4-Chlorotoluene             | µg/kg                   | ND      | NÐ      | ND      | ND      |
|      | 1-isopropyitoluene          | µg/kg                   | ND      |
| 27 4 | 4-Methyl-2-pentanone        | µg/kg                   | ND      |
|      | Acetone                     | µg/kg                   | ND      | 5.94 J  | 32.7 J  | 16.5 J  | 21,7 J  | 98.8    | 35,7 J  | ND      | 11.2 J  | ND      |
|      | Benzene                     | µg/kg                   | ND      |
| 30 E | Bromobenzene                | µg/kg                   | ND      | ND      | ND      | ND      | ND      | NĎ      | ND      | ND      | ND      | ND      |
|      | Bromochloromethane          | pg/kg                   | ND      |
|      | Bromodichloromethane        | µg/kg                   | ND      |
|      | Bromoform                   | µg/kg                   | ND      |
|      | Bromomethane                | µg/kg                   | ND      |

J: Estimated amount between the detection limit and reporting limit

R: Data rejected



ē.

| Tab | le 7. | Conti | inued |
|-----|-------|-------|-------|
|     |       |       |       |

|       |                                | Borehole $\rightarrow$  | E11-170 | E11-170 | E11-171 | E11-171 | E11-171 | E11-172 | E11-172 | E11-172 | E11-172   | E11-173 |
|-------|--------------------------------|-------------------------|---------|---------|---------|---------|---------|---------|---------|---------|-----------|---------|
| No    |                                | Sample ID $\rightarrow$ | S3      | S4      | S1      | S2      | \$3     | S1      | S2      | S3      | <b>S4</b> | S1      |
|       | Analyte↓                       | Depth, m →              | ~5.0    | ~7.5    | 0.0~0.5 | ~2.0    | ~6.5    | 0.0~0.5 | ~2.0    | ~5.0    | ~8.7      | 0,0~0.5 |
| 35    | Carbon disulfide               | µg/kg                   | ND      | ND      | 6.67    | ND      | ND      | ND      | ND      | ND      | ND        | ND      |
| 36    | Carbon tetrachloride           | µg/kg                   | ND        | ND      |
| 37    | Chlorobenzene                  | μg/kg                   | ND        | ND      |
| 38    | Chloroethane                   | µg/kg                   | ND      | NÐ      | ND        | ND      |
| 39    | Chloroform                     | µg/kg                   | ND        | ND      |
| 40    | Chloromethane                  | μg/kg                   | ND        | ND      |
| 41    | cis-1,2-Dichloroethene         | µg/kg                   | 558     | 15.2    | ND      | 3.57 J  | 52.3    | ND      | ND      | ND      | 11.4      | ND      |
| 42    | cis-1,3-Dichloropropene        | µg/kg                   | ND        | ND      |
| 43    | Dibromochloromethane           | µg/kg                   | ND        | ND      |
| 44    | Dibromomethane                 | µg/kg                   | ND        | ND      |
| 45    | Dichlorodifluoromethane        | µg/kg                   | ND        | ND      |
| 46    | Ethyl Benzene                  | µg/kg                   | ND        | ND      |
| 47    | Hexachlorobutadiene            | µg/kg                   | ND        | ND      |
| 48    | Isopropylbenzene (Cumene)      | µg/kg                   | ND        | ND      |
| 49    | m,p-Xylene                     | µg/kg                   | ND        | ND      |
| 50    | Methyl iodide                  | µg/kg                   | ND      | ND      | 1.35 J  | ND      | ND      | ND      | ND      | ND      | ND        | ND      |
| 51    | Methylene chloride             | µg/kg                   | ND        | ND      |
| 52    | Naphthalene                    | µg/kg                   | ND      | ND      | ND      | ND      | ND      | ND      | NÐ      | ND      | ND        | ND      |
| 53    | n-Butylbenzene                 | µg/kg                   | ND        | ND      |
| 54    | n-Propylbenzene                | µg/kg                   | ND        | ND      |
| 55    | o-Xylene                       | µg/kg                   | ND        | ND      |
| 56    | sec-Butylbenzene               | µg/kg                   | ND        | ND      |
| 57    | Styrene                        | µg/kg                   | ND        | ND      |
| 58 1  | tert-Butyl methyl ether (MTBE) | µg/kg                   | ND        | ND      |
| 59 1  | tert-Butylbenzene              | µg/kg                   | ND        | ND      |
| 60 1  | fetrachloroethene              | µg/kg                   | 684     | 0.78 J  | ND      | 2,03 J  | 22.1    | 2.91 J  | 8.44    | 4,17    | 2.48 J    | ND      |
| 61    | Foluene                        | µg/kg                   | ND        | ND      |
| 62 1  | rans-1,2-Dichloroethene        | µg/kg                   | NÐ      | ND        | ND      |
| 63 t  | rans-1,3-Dichloropropene       | µg/kg                   | ND      | ND      | ND      | ND      | ND      | ND      | NÐ      | ND      | ND        | ND      |
| 64 t  | rans-1,4-Dichloro-2-butene     | μg/kg                   | ND        | ND      |
| 65 1  | Frichloroethene                | µg/kg                   | 55.1    | ND      | ND      | ND      | 2.04 J  | ND      | ND      | ND      | 1.36 J    | ND      |
| 66 T  | Trichlorofluoromethane         | µg/kg                   | ND        | ND      |
| 57  \ | /inyl chloride                 | μg/kg                   | ND        | ND      |

J: Estimated amount between the detection limit and reporting limit

R: Data rejected

3391

| Table | 7. | Continued |
|-------|----|-----------|
|       |    |           |

|       |                             | Borehole $\rightarrow$ | E11-173     | E11-173 | E11-173 | E11-174 | E11-174 | E11-174 | E11-174 | E11-175 | E11-175 | E11-175 |
|-------|-----------------------------|------------------------|-------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| No    |                             | Sample ID $ ightarrow$ | <b>\$</b> 2 | \$3     | S4      | S1      | \$2     | \$3     | S4      | S1      | S2      | \$3     |
|       | Analyte↓                    | Depth, m →             | ~2.0        | ~5.0    | ~10.0   | 0.3~0.8 | ~2.3    | 2.3~5.3 | ~8.9    | 0.0~0.5 | ~2,0    | ~5.0    |
| 1     | 1,1,1,2-Tetrachloroethane   | μg/kg                  | ND          | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 2     | 1,1,1-Trichloroethane       | µg/kg                  | ND          | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 3     | 1,1,2,2-Tetrachloroethane   | µg/kg                  | ND          | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 4     | 1,1,2-Trichloroethane       | µg/kg                  | ND          | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 5     | 1,1-Dichloroethane          | µg/kg                  | ND          | ND      | ND      | ND      | ND      | ND      | ND      | NÐ      | ND      | ND      |
| 6     | 1,1-Dichloroethene          | µg/kg                  | ND          | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 7     | 1,1-Dichloropropene         | µg/kg                  | ND          | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
|       | 1,2,3-Trichlorobenzene      | µg/kg                  | ND          | ND      | ND      | 89.5 J  | ND      | ND      | ND      | NÐ      | ND      | ND      |
| 9     | 1,2,3-Trichloropropane      | µg/kg                  | ND          | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 10    | 1,2,4-Trichlorobenzene      | µg/kg                  | ND          | ND      | 29.3 J  | 295     | ND      | ND      | ND      | ND      | ND      | ND      |
| ·     | 1,2,4-Trimethylbenzene      | µg/kg                  | ND          | ND      | ND      | 22.7 J  | ND      | NÐ      | ND      | ND      | ND      | ND      |
|       | 1,2-Dibromo-3-chloropropane | µg/kg                  | ND          | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
|       | 1,2-Dibromoethane           | µg/kg                  | ND          | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
|       | 1,2-Dichlorobenzene         | µg/kg                  | ND          | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
|       | 1,2-Dichloroethane          | µg/kg                  | ND          | ND      | ND      | ND      | ND      | ND      | ND      | NÐ      | ND      | ND      |
|       | 1,2-Dichloropropane         | µg/kg                  | ND          | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
|       | 1,3,5-Trimethylbenzene      | µg/kg                  | ND          | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
|       | 1,3-Dichlorobenzene         | µg/kg                  | ND          | ND      | 9,26 J  | ND      | ND      | ND      | ND      | NÐ      | ND      | ND      |
| 19    | 1,3-Dichloropropane         | µg/kg                  | ND          | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
|       | 1,4-Dichlorobenzene         | µg/kg                  | ND          | ND      | 12.3 J  | 339     | ND      | ND      | ND      | ND      | ND      | ND      |
|       | 2,2-Dichloropropane         | µg/kg                  | ND          | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
|       | 2-Butanone                  | µg/kg                  | ND          | 4.73 J  | ND      | ND      | 17.4 J  | ND      | 1.86 J  | 1,93 J  | 1.86 J  | ND      |
|       | 2-Chlorotoluene             | µg/kg                  | ND          | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
|       | 2-Hexanone                  | µg/kg                  | ND          | ND      | ND      | ND      | ND      | ND      | ND      | NÐ      | ND      | ND      |
|       | 4-Chiorotoluene             | µg/kg                  | ND          | ND      | ND      | NÐ      | ND      | ND      | ND      | ND      | ND      | ND      |
|       | 1-isopropyitoluene          | µg/kg                  | ND          | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
|       | 1-Methyl-2-pentanone        | µg/kg                  | ND          | ND      | ND      | ND      | ND      | ND      | ND      | NÐ      | ND      | ND      |
| ***** | Acetone                     | µg/kg                  | 76.5        | 32,5 J  | ND      | ND      | 69.5    | 8.4 J   | 12,4 J  | 19.7 J  | 11.7 J  | 5.29 J  |
| _     | Benzene                     | µg/kg                  | ND          | ND      | 6.69 J  | ND      | ND      | 0.86 J  | ND      | ND      | ND      | ND      |
|       | Bromobenzene                | µg/kg                  | ND          | ND      | ND      | ND      | ND      | ND      | ND      | NÐ      | ND      | ND      |
|       | Bromochloromethane          | li8/kg                 | ND          | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| - 1   | Bromodichloromethane        | µg/kg                  | ND          | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| -     | Bromoform                   | µg/kg                  | ND          | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 34 E  | Bromomethane                | µg/kg                  | ND          | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |

I: Estimated amount between the detection limit and reporting limit

R: Data rejected

33 92

÷

| Table | 7        | Continued |
|-------|----------|-----------|
| Tanie | <i>.</i> | contanuea |

|      |                                | Borehole →  | E11-173 | E11-173 | E11-173 | E11-174 | E11-174 | E11-174 | E11-174 | E11-175 | E11-175 | E11-175 |
|------|--------------------------------|-------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| No   |                                | Sample ID → | S2      | S3      | S4      | S1      | S2      | S3      | S4      | S1      | 52      | S3      |
|      | Analyte↓                       | Depth, m 🔿  | ~2.0    | ~5.0    | ~10.0   | 0.3~0.8 | ~2.3    | 2.3~5.3 | ~8.9    | 0.0~0.5 | ~2,0    | ~5,0    |
| 35   | Carbon disulfide               | µg/kg       | ND      | ND      | ND      | ND      | 1.03 J  | ND      | ND      | ND      | ND      | ND      |
| 36   | Carbon tetrachloride           | µg/kg       | ND      |
| 37   | Chlorobenzene                  | μg/kg       | ND      | ND      | 11,3 J  | 278     | 0,938 J | 5.25    | ND      | NÐ      | ND      | ND      |
| 38   | Chloroethane                   | µg/kg       | ND      | ND      | ND      | ND      | ND      | 10.7    | ND      | ND      | ND      | ND      |
| 39   | Chloroform                     | μg/kg       | ND      | ND      | ND      | ND      | ND      | ND      | 26.7    | ND      | ND      | ND      |
| 40   | Chloromethane                  | μg/kg       | ND      |
| 41   | cis-1,2-Dichloroethene         | µg/kg       | ND      | ND      | 293     | 438     | 16      | 4.77    | 21.1    | ND      | ND      | 104     |
|      | cis-1,3-Dichloropropene        | µg/kg       | ND      |
| 43   | Dibromochloromethane           | μg/kg       | ND      |
|      | Dibromomethane                 | µg/kg       | ND      | NÐ      | ND      |
| 45   | Dichlorodifluoromethane        | μg/kg       | ND      | ND      | ND      | NÐ      | ND      | ND      | ND      | ND      | ND      | ND      |
| 46   | Ethyl Benzene                  | µg/kg       | ND      |
|      | Hexachlorobutadiene            | µg/kg       | ND      | ND      | ND      | ND      | NÐ      | ND      | ND      | ND      | ND      | ND      |
| 48   | Isopropylbenzene (Cumene)      | μg/kg       | ND      |
| 49   | m,p-Xylene                     | μg/kg       | ND      |
| 50   | Methyl iodide                  | µg/kg       | 6.32    | 2.01 J  | ND      | ND      | 2,72 J  | ND      | ND      | ND      | 1.04 J  | ND      |
| 51   | Methylene chloride             | µg/kg       | ND      |
| 52   | Naphthalene                    | µg/kg       | ND      | ND      | ND      | 2560    | ND      | ND      | ND      | ND      | ND      | ND      |
| 53   | n-Butylbenzene                 | µg/kg       | ND      |
| 54   | n-Propylbenzene                | µg/kg       | ND      |
| 55   | o-Xylene                       | µg/kg       | ND      | ND      | ND      | 18.7 J  | ND      | ND      | ND      | ND      | ND      | ND      |
|      | sec-Butylbenzene               | μg/kg       | ND      | NĎ      | ND      | NÐ      |
| 57   | Styrene                        | µg/kg       | ND      |
| 58   | tert-Butyl methyl ether (MTBE) | µg/kg       | ND      |
| 59   | tert-Butylbenzene              | μg/kg       | ND      | NÐ      |
| 60   | Tetrachloroethene              | µg/kg       | 21.8    | 2.65 J  | 36,5 J  | 131 J   | 11,5    | 4.45 J  | 142     | 2.19 J  | ND      | 159     |
|      | Toluene                        | µg/kg       | ND      | ND      | ND      | ND      | 0.891 J | 0.946 J | ND      | ND      | 0.949 J | ND      |
| 62   | trans-1,2-Dichloroethene       | µg/kg       | ND      | 4.37    |
|      | trans-1,3-Dichloropropene      | µg/kg       | ND      |
| 64 ( | trans-1,4-Dichloro-2-butene    | µg/kg       | ND      |
|      | Trichloroethene                | µg/kg       | ND      | ΝD      | 13.9.7  | ND      | ND      | 5.16    | 15.9    | ND      | ND      | 47.2    |
|      | Trichlorofluoromethane         | µg/kg       | ND      |
| 67 N | Vinyl chloride                 | µg/kg       | ND      | ND      | 56.1    | ND      | ND      | 3.82 J  | ND      | ND      | ND      | 0.748 J |

J: Estimated amount between the detection limit and reporting limit

R: Data rejected

3393

ŧ

| Table 7. Continued | Table 2 | 7. Co | ontinued |
|--------------------|---------|-------|----------|
|--------------------|---------|-------|----------|

|      |                             | Borehole →  | E11-175 | E11-176 | E11-176 | E11-176 | E11-176 | E11-177 | E11-177 | E11-177 | E11-177 | E11-178 |
|------|-----------------------------|-------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| No   |                             | Sample ID → | S4      | \$1     | \$2     | \$3     | S4      | S1      | S2      | S3      | 54      | S1      |
|      | Analyte↓                    | Depth, m →  | ~7.25   | 0.0~0.5 | ~2.0    | ~5.0    | ~10,0   | 0.4~0.9 | ~2,4    | ~5.4    | ~9.0    | 0.0~0.5 |
| 1    | 1,1,1,2-Tetrachloroethane   | µg/kg       | ND      |
| 2    | 1,1,1-Trichloroethane       | µg/kg       | ND      |
| 3    | 1,1,2,2-Tetrachloroethane   | µg/kg       | ND      |
| 4    | 1,1,2-Trichloroethane       | μg/kg       | ND      |
| 5    | 1,1-Dichloroethane          | µg/kg       | ND      |
| 6    | 1,1-Dichloroethene          | μg/kg       | ND      |
| 7    | 1,1-Dichloropropene         | µg/kg       | ND      | ND      | ND      | ND      | ND      | NÐ      | ND      | ND      | ND      | ND      |
| 8    | 1,2,3-Trichlorobenzene      | µg/kg       | ND      |
|      | 1,2,3-Trichloropropane      | μg/kg       | ND      |
| 10   | 1,2,4-Trichlorobenzene      | µg/kg       | ND      |
|      | 1,2,4-Trimethylbenzene      | μg/kg       | ND      |
| 12   | 1,2-Dibromo-3-chloropropane | μg/kg       | ND      |
|      | 1,2-Dibromoethane           | µg/kg       | ND      |
|      | 1,2-Dichlorobenzene         | µg/kg       | ND      |
|      | 1,2-Dichloroethane          | µg/kg       | ND      | ND      | ND      | ND      | ND      | ND      | NÐ      | ND      | ND      | ND      |
| 16   | 1,2-Dichloropropane         | μg/kg       | ND      |
|      | 1,3,5-Trimethylbenzene      | μg/kg       | ND      |
|      | 1,3-Dichlorobenzene         | μg/kg       | ND      |
| 19   | 1,3-Dichloropropane         | μg/kg       | ND      |
|      | 1,4-Dichlorobenzene         | µg/kg       | ND      |
| 21   | 2,2-Dichloropropane         | µg/kg       | ND      |
| 22   | 2-Butanone                  | µg/kg       | NÐ      | ND      | 8,95 J  | 1.43 J  | ND      | 7.21 J  | ND      | 6.47 J  | 10.5 J  | 7.07 J  |
|      | 2-Chlorotoluene             | µg/kg       | NU      | ND      |
|      | 2-Hexanone                  | µg/kg       | ND      |
|      | 4-Chlorotoluene             | µg/kg       | ND      |
|      | 1-IsopropyItoluene          | µg/kg       | ND      |
|      | I-Methyl-2-pentanone        | μg/kg       | ND      |
| _    | Acetone                     | µg/kg       | ND      | 8.67 J  | 40 J    | 5.02 J  | ND      | 37.2 J  | 16,7 J  | 80.7    | 75.9    | 41.7    |
| _    | Benzene                     | µg/kg       | ND      |
|      | Bromobenzene                | µg/kg       | ND      |
|      | Bromochloromethane          | µg/kg       | ND      |
|      | Bromodichloromethane        | µg/kg       | ND      |
| 33 B | Bromoform                   | µg/kg       | ND      |
| 34 B | Bromomethane                | µg/kg       | ND      |

J: Estimated amount between the detection limit and reporting limit

R: Data rejected

3394

|    |                                | Borehole $\rightarrow$ | E11-175 | E11-176 | E11-176 | E11-176 | E11-176 | E11-177 | E11-177 | E11-177 | E11-177 | E11-178 |
|----|--------------------------------|------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| No |                                | Sample ID →            | S4      | S1      | S2      | \$3     | S4      | S1      | S2      | 53      | S4      | S1      |
|    | Analyte↓                       | Depth, m →             | ~7,25   | 0.0~0.5 | ~2,0    | ~5.0    | ~10.0   | 0.4~0.9 | ~2,4    | ~5.4    | ~9,0    | 0.0~0.5 |
| 35 | Carbon disulfide               | µg/kg                  | ND      | ND      | ND      | ND      | ND      | ND      | 0.989 J | ND      | ND      | ND      |
| 36 | Carbon tetrachloride           | μg/kg                  | ND      |
| 37 | Chlorobenzene                  | µg/kg                  | ND      |
| 38 | Chloroethane                   | µg/kg                  | ND      |
| 39 | Chloroform                     | μg/kg                  | ND      | 11.8    | ND      |
| 40 | Chloromethane                  | µg/kg                  | ND      |
| 41 | cis-1,2-Dichloroethene         | μg/kg                  | 9.21 J  | ND      | ND      | ND      | 70,6    | 1.17 J  | ND      | ND      | 25.7    | ND      |
| 42 | cis-1,3-Dichloropropene        | μg/kg                  | ND      |
| 43 | Dibromochloromethane           | µg/kg                  | ND      |
| 44 | Dibromomethane                 | µg/kg                  | ND      |
| 45 | Dichlorodifluoromethane        | µg/kg                  | ND      |
| 46 | Ethyl Benzene                  | µg/kg                  | ND      |
| 47 | Hexachlorobutadiene            | µg/kg                  | ND      |
| 48 | isopropylbenzene (Cumene)      | µg/kg                  | ND      |
| 49 | m,p-Xylene                     | µg/kg                  | ND      |
| 50 | Methyl iodide                  | µg/kg                  | ND      | ND      | 2,39 J  | ND      | ND      | ND      | 0.801 J | 2.14 J  | 2.19 J  | 1.77 J  |
| 51 | Methylene chloride             | μg/kg                  | ND      |
| 52 | Naphthalene                    | µg/kg                  | ND      |
| 53 | n-Butylbenzene                 | μg/kg                  | ND      |
| 54 | n-Propylbenzene                | µg/kg                  | ND      |
| 55 | o-Xylene                       | µg/kg                  | ND      |
| 56 | sec-Butylbenzene               | μg/kg                  | ND      |
| 57 | Styrene                        | µg/kg                  | ND      |
|    | tert-Butyl methyl ether (MTBE) | μg/kg                  | ND      |
| 59 | tert-Butylbenzene              | µg/kg                  | ND      |
| 60 | Tetrachloroethene              | µg/kg                  | 229     | ND      | 3,44 J  | ND      | 40.6 J  | 1.31 J  | ND      | 5.44    | 23,4    | 0.841 J |
| 61 | Toluene                        | µg/kg                  | 7.54 J  | ND      | ND      | ND      | ND      | 1.17 J  | ND      | ND      | ND      | ND      |
| 62 | trans-1,2-Dichloroethene       | µg/kg                  | ND      |
| 63 | trans-1,3-Dichloropropene      | μg/kg                  | ND      |
| 64 | trans-1,4-Dichloro-2-butene    | µg/kg                  | ND      |
| 65 | Trichloroethene                | μg/kg                  | 133     | ND      | ND      | ND      | 587     | ND      | ND      | 1.28 J  | 9;47    | ND      |
|    | Trichlorofluoromethane         | μg/kg                  | ND      | ND      | ND      | ND      | ND      | ND      | NÐ      | ND      | ND      | ND      |
| 67 | Vinyl chloride                 | µg/kg                  | ND      |

J: Estimated amount between the detection limit and reporting limit

R: Data rejected

|      |                             | Borehole ->  |        | E11-178 | E11-178 | E11-179   | E11-179 | E11-179 | E11-179 | E11-180 | E11-180 | E11-180 |
|------|-----------------------------|--------------|--------|---------|---------|-----------|---------|---------|---------|---------|---------|---------|
| No   |                             | Sample ID -> |        | S3      | \$4     | <b>S1</b> | S2      | S3      | S4      | S1      | S2      | S3      |
|      | Analyte J                   | Depth, m →   | ~2.0   | ~5.0    | ~10.0   | 0.0~0.5   | ~2.0    | ~5.0    | ~10.0   | 0.0~0.5 | ~2.0    | ~5.0    |
| 1    | 1,1,1,2-Tetrachloroethane   | μg/kg        | ND     | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      |
|      | 1,1,1-Trichloroethane       | μg/kg        | ND     | ND      | ND      | ND        | ND      | ND      | NÐ      | ND      | ND      | ND      |
| 3    | 1,1,2,2-Tetrachloroethane   | µg/kg        | ND     | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      |
| 4    | 1,1,2-Trichloroethane       | μg/kg        | ND     | NÐ      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      |
| 5    | 1,1-Dichloroethane          | µg/kg        | ND     | ND      | 1.36 J  | ND        | ND      | ND      | ND      | ND      | ND      | ND      |
| 6    | 1,1-Dichloroethene          | μg/kg        | ND     | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      |
| 7    | 1,1-Dichloropropene         | μg/kg        | ND     | ND      | ND      | ND        | ND      | ND      | ND      | NÐ      | ND      | ND      |
| 8    | 1,2,3-Trichlorobenzene      | µg/kg        | ND     | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      |
| 9    | 1,2,3-Trichloropropane      | µg/kg        | ND     | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      |
| 10   | 1,2,4-Trichlorobenzene      | μg/kg        | ND     | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      |
| 11   | 1,2,4-Trimethylbenzene      | μg/kg        | ND     | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      |
| 12   | 1,2-Dibromo-3-chloropropane | µg/kg        | ND     | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      |
| 13   | 1,2-Dibromoethane           | µg/kg        | ND     | ND      | ND      | ND        | ND      | ND      | NĐ      | ND      | ND      | ND      |
| 14   | 1,2-Dichlorobenzene         | µg/kg        | ND     | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      |
| 15   | 1,2-Dichloroethane          | µg/kg        | ND     | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      |
| 16   | 1,2-Dichloropropane         | µg/kg        | ND     | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      |
| 17   | 1,3,5-Trimethylbenzene      | µg/kg        | ND     | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      |
| 18   | 1,3-Dichlorobenzene         | µg/kg        | ND     | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      |
| 19   | 1,3-Dichloropropane         | µg/kg        | ND     | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      |
| 20   | 1,4-Dichlorobenzene         | µg/kg        | ND     | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      |
| 21   | 2,2-Dichloropropane         | µg/kg        | ND     | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      |
| 22 2 | 2-Butanone                  | µg/kg        | 1.89 J | 1.8 J   | 1.95 J  | ND        | 2,93 J  | 1.92    | ND      | 28      | ND      | ND      |
| 23 2 | 2-Chlorotoluene             | µg/kg        | ND     | ND      | 10,4    | ND        | ND      | ND      | ND      | ND      | ND      | ND      |
| 24 2 | 2-Hexanone                  | µg/kg        | NÐ     | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      |
| 25 4 | 4-Chlorotoluene             | µg/kg        | ND     | ND      | 19.7    | ND        | ND      | ND      | ND      | ND      | ND      | ND      |
| 26 4 | 4-Isopropyltoluene          | µg/kg        | ND     | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      |
| 27 4 | 4-Methyl-2-pentanone        | µg/kg        | ND     | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      |
| 28 / | Acetone                     | µg/kg        | 10.8 J | 11.1 J  | 7.21 J  | ND        | 15 J    | 13.3 J  | ND      | 97.1    | ND      | ND      |
| 29 E | Benzene                     | µg/kg        | ND     | ND      | 1.21 J  | ND        | ND      | ND      | ND      | ND      | ND      | ND      |
| 30 B | Bromobenzene                | µg/kg        | ND     | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      |
| 31 B | Bromochloromethane          | µg/kg        | ND     | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      |
| 32 B | Bromodichloromethane        | µg/kg        | ND     | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      |
| 3 B  | Bromoform                   | µg/kg        | ND     | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      |
| 4 B  | Bromomethane                | µg/kg        | D      | ND      | ND      | ND        | ND      | ND      | ND      | ND      | ND      | ND      |

J: Estimated amount between the detection limit and reporting limit

R: Data rejected

33 96

et in the second se

|    |                                | Borehole →              | E11-178 | E11-178 | E11-178 | E11-179 | E11-179    | E11-179 | E11-179 | E11-180 | E11-180 | E11-180 |
|----|--------------------------------|-------------------------|---------|---------|---------|---------|------------|---------|---------|---------|---------|---------|
| No |                                | Sample ID $\rightarrow$ | S2      | S3      | S4      | 51      | <b>5</b> 2 | \$3     | S4      | S1      | S2      | \$3     |
|    | Analyte↓                       | Depth, m →              | ~2.0    | ~5.0    | ~10,0   | 0.0~0.5 | ~2.0       | ~5.0    | ~10.0   | 0.0~0.5 | ~2.0    | ~5,0    |
| 35 | Carbon disulfide               | μg/kg                   | ND      | ND      | 1,22 J  | ND      | ND         | ND      | ND      | ND      | ND      | ND      |
| 36 | Carbon tetrachloride           | μg/kg                   | ND      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND      |
| 37 | Chlorobenzene                  | µg/kg                   | ND      | ND      | 0.939 J | ND      | ND         | ND      | ND      | ND      | ND      | ND      |
| 38 | Chloroethane                   | µg/kg                   | NÐ      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND      |
| 39 | Chloroform                     | µg/kg                   | ND      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND      |
| 40 | Chloromethane                  | µg/kg                   | ND      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND      |
| 41 | cis-1,2-Dichloroethene         | µg/kg                   | ND      | ND      | 1.56 J  | ND      | ND         | 8.52    | 1.46    | ND      | ND      | 52.9 J  |
| 42 | cis-1,3-Dichloropropene        | µg/kg                   | ND      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND      |
| 43 | Dibromochloromethane           | µg/kg                   | ND      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND      |
| 44 | Dibromomethane                 | µg/kg                   | ND      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND      |
| 45 | Dichlorodifluoromethane        | μg/kg                   | ND      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND      |
| 46 | Ethyl Benzene                  | μg/kg                   | ND      | ND      | ND      | NÐ      | ND         | ND      | ND      | ND      | ND      | ND      |
| 47 | Hexachlorobutadiene            | μg/kg                   | ND      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND      |
| 48 | Isopropylbenzene (Cumene)      | µg/kg                   | ND      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND      |
| 49 | m,p-Xylene                     | µg/kg                   | ND      | ND      | ND      | NÐ      | ND         | ND      | ND      | ND      | ND      | ND      |
| 50 | Methyl iodide                  | μg/kg                   | NÐ      | 0.728 J | ND      | ND      | ND         | 1,24 J  | ND      | 7.92    | ND      | ND      |
| 51 | Methylene chloride             | μg/kg                   | ND      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND      |
| 52 | Naphthalene                    | µg/kg                   | ND      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND      |
| 53 | n-Butylbenzene                 | µg/kg                   | ND      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND      |
| 54 | n-Propylbenzene                | µg/kg                   | ND      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND      |
| 55 | o-Xylene                       | μg/kg                   | ND      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND      |
|    | sec-Butylbenzene               | µg/kg                   | ND      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND      |
| 57 | Styrene                        | µg/kg                   | ND      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND      |
| 58 | tert-Butyl methyl ether (MTBE) | µg/kg                   | ND      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND      |
|    | tert-Butylbenzene              | μg/kg                   | ND      | ND      | ND      | NÐ      | ND         | ND      | ND      | ND      | ND      | ND      |
| 60 | Tetrachloroethene              | µg/kg                   | 2.35 J  | 30.3    | 0.72 J  | 32300   | 24.9       | 37.8    | 489     | ND      | 1,64 J  | 23.8 J  |
|    | Toluene                        | µg/kg                   | NĎ      | ND      | 3.31 J  | ND      | ND         | ND      | ND      | ND      | ND      | 1620    |
|    | trans-1,2-Dichloroethene       | µg/kg                   | NÐ      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND      |
|    | trans-1,3-Dichloropropene      | µg/kg                   | ND      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND      |
| 64 | trans-1,4-Dichloro-2-butene    | µg/kg                   | ND      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND      |
| 65 | Trichloroethene                | µg/kg                   | ND      | 2.29 J  | ND      | ND      | ND         | 3.16 J  | 66.4    | ND      | ND      | ND      |
|    | Trichlorofluoromethane         | µg/kg                   | ND      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND      |
| 67 | Vinyl chloride                 | µg/kg                   | ND      | ND      | ND      | ND      | ND         | ND      | NÐ      | ND      | NÐ      | ND      |

#### NOTES:

J: Estimated amount between the detection limit and reporting limit

R: Data rejected

|      |                             | Borehole →  | E11-180 | E11-181 | E11-181 | E11-181 | E11-182    | E11-182 | E11-182 | E11-182 | E11-183 | E11-183     |
|------|-----------------------------|-------------|---------|---------|---------|---------|------------|---------|---------|---------|---------|-------------|
| No   |                             | Sample ID → | S4      | \$1     | 52      | S3      | <b>\$1</b> | S2      | \$3     | \$4     | S1      | <b>\$</b> 2 |
| ent: | Analyte                     | Depth, m →  | ~10.0   | 0.0~0.5 | ~2.0    | ~5.0    | 0.0~0.5    | ~2.0    | ~5.0    | ~10.0   | 0.0~0.5 | ~2,0        |
| 1    | 1,1,1,2-Tetrachloroethane   | µg/kg       | ND      | ND      | ND      | NÐ      | ND         | ND      | ND      | ND      | ND      | ND          |
|      | 1,1,1-Trichloroethane       | μg/kg       | ND      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND          |
| 3    | 1,1,2,2-Tetrachloroethane   | µg/kg       | ND      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND          |
| _    | 1,1,2-Trichloroethane       | μg/kg       | ND      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND          |
|      | 1,1-Dichloroethane          | μg/kg       | ND      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND          |
| 6    | 1,1-Dichloroethene          | μg/kg       | ND      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND          |
| 7    | 1,1-Dichloropropene         | µg/kg       | ND      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND          |
| 8    | 1,2,3-Trichlorobenzene      | µg/kg       | ND      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND          |
| 9    | 1,2,3-Trichloropropane      | µg/kg       | ND      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND          |
| 10   | 1,2,4-Trichlorobenzene      | μg/kg       | ND      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND          |
| 11   | 1,2,4-Trimethylbenzene      | μg/kg       | ND      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND          |
| 12   | 1,2-Dibromo-3-chloropropane | µg/kg       | ND      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND          |
| 13   | 1,2-Dibromoethane           | µg/kg       | ND      | ND      | ND      | NÐ      | ND         | ND      | ND      | ND      | ND      | ND          |
| 14   | 1,2-Dichlorobenzene         | μg/kg       | ND      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND          |
| 15   | 1,2-Dichloroethane          | µg/kg       | ND      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND          |
| 16   | 1,2-Dichloropropane         | μg/kg       | ND      | ND      | ND      | NÐ      | ND         | ND      | ND      | ND      | ND      | ND          |
| 17   | 1,3,5-Trimethylbenzene      | μg/kg       | ND      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND          |
| 18   | 1,3-Dichlorobenzene         | µg/kg       | ND      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND          |
| 19   | 1,3-Dichloropropane         | μg/kg       | ND      | ND      | ND      | ND      | ND         | ND      | ND      | NÐ      | ND      | ND          |
| 20   | 1,4-Dichlorobenzene         | µg/kg       | ND      | ND      | NÐ      | ND      | ND         | ND      | ND      | ND      | ND      | ND          |
| 21   | 2,2-Dichloropropane         | µg/kg       | ND      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND          |
| 2.2. | 2-Butanone                  | µg/kg       | ND      | ND      | ND      | ND      | ND         | ND      | ND      | 5.52 J  | ND      | ND          |
| 23   | 2-Chlorotoluene             | µg/kg       | NO      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND          |
| 24   | 2-Hexanone                  | μg/kg       | ND      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND          |
| 25 4 | 4-Chlorotoluene             | μg/kg       | ND      | ND      | ND      | NÐ      | ND         | ND      | ND      | ND      | ND      | ND          |
| 26   | 4-isopropyitoluene          | µg/kg       | ND      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND          |
| 27 4 | 4-Methyl-2-pentanone        | μg/kg       | ND      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND          |
| 28 / | Acetone                     | μg/kg       | ND      | ND      | ND      | ND      | 7.72.1     | 11.6 J  | 29.1 J  | 27.1 J  | 21.4 }  | 12.4 J      |
| 29 8 | Benzene                     | µg/kg       | ND      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND          |
| 30 E | Bromobenzene                | µg/kg       | ND      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | NÐ      | ND          |
| 31 E | Bromochloromethane          | µg/kg       | ND      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND          |
| 12 E | Bromodichloromethane        | µg/kg       | ND      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND          |
| 3 E  | Bromoform                   | µg/kg       | ND      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND          |
| 14 E | Bromomethane                | µg/kg       | ND      | ND      | ND      | ND      | ND         | ND      | ND      | ND      | ND      | ND          |

J: Estimated amount between the detection limit and reporting limit

R: Data rejected

3398

| Table | 7. | Continued |
|-------|----|-----------|
|       |    |           |

|      |                                | Borehole →             | E11-180 | E11-181 | E11-181 | E11-181 | E11-182 | E11-182 | E11-182 | E11-182 | E11-183 | E11-183 |
|------|--------------------------------|------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| No   |                                | Sample ID →            | S4      | S1      | S2      | \$3     | S1      | \$2     | S3      | S4      | S1      | S2      |
| 2223 | Analyte 🗸                      | Depth, m $\rightarrow$ | ~10.0   | 0.0~0.5 | ~2.0    | ~5.0    | 0.0~0.5 | ~2,0    | ~5.0    | ~10.0   | 0.0~0.5 | ~2.0    |
| 35   | Carbon disulfide               | µg/kg                  | ND      | ND      | ND      | NÐ      | ND      | ND      | ND      | ND      | ND      | ND      |
| 36   | Carbon tetrachloride           | µg/kg                  | ND      | ND      | ND      | ND      | ND      | ND      | NÐ      | ND      | ND      | ND      |
| 37   | Chlorobenzene                  | µg/kg                  | ND      |
| 38   | Chloroethane                   | µg/kg                  | ND      |
| 39   | Chloroform                     | μg/kg                  | ND      |
| 40   | Chloromethane                  | μg/kg                  | ND      |
| 41   | cis-1,2-Dichloroethene         | µg/kg                  | ND      | ND      | ND      | 3.64 J  | ND      | ND      | 0.908 J | 7.15    | ND      | ND      |
| 42   | cis-1,3-Dichloropropene        | µg/kg                  | ND      | NÐ      | ND      | ND      |
| 43   | Dibromochloromethane           | μg/kg                  | ND      |
|      | Dibromomethane                 | μg/kg                  | ND      |
| 45   | Dichlorodifluoromethane        | µg/kg                  | ND      |
| 46   | Ethyl Benzene                  | µg/kg                  | NÐ      | ND      |
|      | Hexachlorobutadiene            | µg/kg                  | ND      |
| 48   | Isopropylbenzene (Cumene)      | µg/kg                  | ND      |
| 49   | m,p-Xylene                     | µg/kg                  | ND      | ND      | ND      | NÐ      | ND      | ND      | ND      | ND      | ND      | ND      |
| 50   | Methyl iodide                  | µg/kg                  | ND      | NÐ      | ND      |
| 51   | Methylene chloride             | µg/kg                  | ND      | ND      | ND      | ND      | 1,4 J   | 1.78 J  | 1.49 J  | 2.22 J  | 3.69 J  | 2.26 J  |
| 52   | Naphthalene                    | µg/kg                  | ND      | NÐ      | ND      | ND      |
| 53   | n-Butylbenzene                 | µg/kg                  | ND      |
|      | n-Propylbenzene                | μg/kg                  | ND      |
| 55   | o-Xylene                       | µg/kg                  | ND      |
| 56   | sec-Butylbenzene               | µg/kg                  | ND      |
|      | Styrene                        | µg/kg                  | ND      |
|      | tert-Butyl methyl ether (MTBE) | µg/kg                  | ND      |
|      | tert-Butylbenzene              | µg/kg                  | ND      |
|      | Tetrachloroethene              | µg/kg                  | ND      | ND      | 4.85    | 9.39    | ND      | 4.13 J  | 13,7    | 27      | ND      | ND      |
|      | Toluene                        | µg/kg                  | 21300   | ND      | NÐ      |
| 62   | trans-1,2-Dichloroethene       | µg/kg                  | ND      |
| 63   | trans-1,3-Dichloropropene      | µg/kg                  | ND      |
| 64   | trans-1,4-Dichloro-2-butene    | µg/kg                  | NÐ      | ND      |
|      | Frichloroethene                | µg/kg                  | ND      | ND      | ND      | 2.02 J  | ND      | ND      | 1.25 J  | 4.47    | ND      | ND      |
| -    | Frichlorofluoromethane         | µg/kg                  | ND      |
| 67 N | /inyl chloride                 | µg/kg                  | ND      |

J: Estimated amount between the detection limit and reporting limit

R: Data rejected

33 99

-

|      |                             | Borehole -> |        | E11-183 | E11-184 | E11-184 | E11-184 | E11-184 | E11-185 | E11-185 | E11-185 | E11-185 |
|------|-----------------------------|-------------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| No   |                             | Sample ID → | S3     | S4      | S1      | 52      | 53      | S4      | S1      | S2      | \$3     | S4      |
|      | Analyte↓                    | Depth, m →  | ~5.0   | ~10.0   | 0.0~0.5 | ~2.0    | ~5.0    | ~8.75   | 0.0~0.5 | ~2.0    | ~5.0    | ~8.8    |
| 1    | 1,1,1,2-Tetrachloroethane   | μg/kg       | ND     | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 2    | 1,1,1-Trichloroethane       | µg/kg       | ND     | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 3    | 1,1,2,2-Tetrachloroethane   | µg/kg       | ND     | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 4    | 1,1,2-Trichloroethane       | µg/kg       | ND     | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      | NÐ      |
| 5    | 1,1-Dichloroethane          | μg/kg       | ND     | ND      | ND      | ND      | ND      | ND      | ND      | ND      | NÐ      | ND      |
| 6    | 1,1-Dichloroethene          | µg/kg       | ND     | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 7    | 1,1-Dichloropropene         | μg/kg       | ND     | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 8    | 1,2,3-Trichlorobenzene      | µg/kg       | NÐ     | NÐ      | ND      | ND      | NÐ      | ND      | ND      | ND      | ND      | ND      |
| 9    | 1,2,3-Trichloropropane      | µg/kg       | ND     | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 10   | 1,2,4-Trichlorobenzene      | µg/kg       | ND     | NÐ      | ND      |
| 11   | 1,2,4-Trimethylbenzene      | µg/kg       | ND     | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 12   | 1,2-Dibromo-3-chloropropane | µg/kg       | ND     | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 13   | 1,2-Dibromoethane           | µg/kg       | ND     | ND      | NÐ      | ND      |
| 14   | 1,2-Dichlorobenzene         | µg/kg       | ND     | ND      | ND      | NÐ      | ND      | ND      | ND      | ND      | ND      | ND      |
| 15   | 1,2-Dichloroethane          | µg/kg       | ND     | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 16   | 1,2-Dichloropropane         | µg/kg       | ND     | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 17   | 1,3,5-Trimethylbenzene      | μg/kg       | ND     | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 18   | 1,3-Dichlorobenzene         | µg/kg       | ND     | ND      | ND      | NÐ      | ND      | ND      | ND      | ND      | NÐ      | ND      |
| 19   | 1,3-Dichloropropane         | µg/kg       | ND     | ND      | ND      | ND      | ND      | ND      | ND      | NÐ      | ND      | ND      |
| 20   | 1,4-Dichlorobenzene         | µg/kg       | ND     | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 21   | 2,2-Dichloropropane         | µg/kg       | ND     | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 22   | 2-Butanone                  | µg/kg       | ND     | ND      | 7,77 J  | 3.44 1  | 2.72 J  | ND      | 11,5 J  | 2.04 J  | 5.23 J  | ND      |
| 23   | 2-Chlorotoluene             | µg/kg       | ND     | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 24   | 2-Hexanone                  | µg/kg       | ND     | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 25   | 4-Chlorotoluene             | μg/kg       | ND     | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 26   | 4-isopropyitoluene          | µg/kg       | ND     | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 27   | 4-Methyl-2-pentanone        | µg/kg       | ND     | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| Z8   | Acetone                     | µg/kg       | 5,95 J | 16,3 J  | 45      | 11,2 J  | 15 J    | ND      | 49.6    | 12.2 J  | 33.8 J  | 2.37 J  |
| 29   | Benzene                     | µg/kg       | ND     | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 30 1 | Bromobenzene                | µg/kg       | ND     | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 31   | Bromochloromethane          | µg/kg       | ND     | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 32   | Bromodichloromethane        | µg/kg       | ND     | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 33   | Bromoform                   | µg/kg       | ND     | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |
| 34 1 | Bromomethane                | μg/kg       | ND     | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      | ND      |

J: Estimated amount between the detection limit and reporting limit

R: Data rejected